1
|
Chang X, Su H, Ma S, Li Y, Tan Y, Li Y, Dong S, Lin J, Zhou B, Zhang H. Transcriptome analysis of Vero cells infected with attenuated vaccine strain CDV-QN-1. Microb Pathog 2024; 193:106786. [PMID: 38971506 DOI: 10.1016/j.micpath.2024.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.
Collapse
Affiliation(s)
- Xiaoyun Chang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Su
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Shuai Ma
- Qingdao Animal Disease Prevention and Control Center, Qingdao, Shandong, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yue Tan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaxu Lin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Baokun Zhou
- Qingdao Jimo District Animal Health Quarantine Center, Qingdao, Shandong, China.
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Gao C, Li J. Exploring the comorbidity mechanisms between psoriasis and obesity based on bioinformatics. Skin Res Technol 2024; 30:e13575. [PMID: 38279589 PMCID: PMC10818127 DOI: 10.1111/srt.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic, recurrent, immune-mediated inflammatory skin disease characterized by erythematous scaly lesions. Obesity is currently a major global health concern, increasing the risk of diseases such as cardiovascular diseases and diabetes. Since the correlation between psoriasis and obesity, as well as hypertension, diabetes, and cardiovascular diseases, has been clinically evidenced, it is of certain clinical significance to explore the mechanisms underlying the comorbidity of psoriasis with these conditions. MATERIALS AND METHODS Gene targets for both diseases were obtained from the Gene Expression Omnibus (GEO) comprehensive gene expression database. Differential gene analysis, intersection gene analysis, construction and visualization of protein-protein interaction networks (PPI) using R software, Cytoscape 3.8.2 software, online tools such as String, and enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed, with relevant graphics generated. RESULTS Analysis identified 29 intersecting genes between the two diseases, with 10 key targets such as S100A7 and SERPINB4. Enrichment analysis indicated their involvement in regulating biological processes such as leukocyte chemotaxis, migration, and chronic inflammatory responses through cellular structures such as intracellular vesicles and extracellular matrix. Molecular functions, including RAGE receptor binding, Toll-like receptor binding, and fatty acid binding, were found to simultaneously regulate psoriasis and obesity. CONCLUSION Psoriasis and obesity may mutually influence each other through multiple targets and pathways, emphasizing the importance of considering comorbidity treatment and daily care in clinical practice.
Collapse
Affiliation(s)
- Changyong Gao
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Jianhong Li
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Marquez M, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, autophagy, and YB-1 independent manner. PLoS One 2023; 18:e0287829. [PMID: 37910521 PMCID: PMC10619827 DOI: 10.1371/journal.pone.0287829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3% without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
4
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, Autophagy, and YB-1 independent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544550. [PMID: 37546823 PMCID: PMC10402176 DOI: 10.1101/2023.06.12.544550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3 % without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| |
Collapse
|
5
|
Lv H, Peng Z, Jia B, Jing H, Cao S, Xu Z, Dong W. Transcriptome analysis of PK-15 cells expressing CSFV NS4A. BMC Vet Res 2022; 18:434. [PMID: 36503524 PMCID: PMC9742017 DOI: 10.1186/s12917-022-03533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF) is a severe disease of pigs that results in huge economic losses worldwide and is caused by classical swine fever virus (CSFV). CSFV nonstructural protein 4 A (NS4A) plays a crucial role in infectious CSFV particle formation. However, the function of NS4A during CSFV infection is not well understood. RESULTS: In this study, we used RNA-seq to investigate the functional role of CSFV NS4A in PK-15 cells. A total of 3893 differentially expressed genes (DEGs) were identified in PK-15 cells expressing NS4A compared to cells expressing the empty vector (NC). Twelve DEGs were selected and further verified by RT‒qPCR. GO and KEGG enrichment analyses revealed that these DEGs were associated with multiple biological functions, including cell adhesion, apoptosis, host defence response, the inflammatory response, the immune response, and autophagy. Interestingly, some genes associated with host immune defence and inflammatory response were downregulated, and some genes associated with host apoptosis and autophagy were upregulated. CONCLUSION CSFV NS4A inhibits the innate immune response, and suppresses the expression of important genes associated with defence response to viruses and inflammatory response, and regulates cell adhesion, apoptosis and autophagy.
Collapse
Affiliation(s)
- Huifang Lv
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhifeng Peng
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Bingxin Jia
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Huiyuan Jing
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Sufang Cao
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhikun Xu
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Wang Dong
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| |
Collapse
|
6
|
Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses 2022; 14:v14071538. [PMID: 35891518 PMCID: PMC9317111 DOI: 10.3390/v14071538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection.
Collapse
|
7
|
Expressions of interferon-stimulated genes in peripheral blood mononuclear cells from patients with secondary syphilis. INFECTION GENETICS AND EVOLUTION 2021; 96:105137. [PMID: 34781038 DOI: 10.1016/j.meegid.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Syphilis is a sexually transmitted disease that threatens human health worldwide. However, the immune regulation cascade caused by treponemia pallidum (TP) infection remains still largely unclear. METHODS To investigate the expression of ISGs in secondary syphilis (SS), we recruited 64 patients with SS and equal number of healthy participants to obtain their peripheral blood mononuclear cells (PBMCs). qRT-PCR was performed to estimate the expression of interferon-stimulated genes (ISGs) including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2. Receiver-operating characteristic (ROC) analysis was adapted to diagnostic value of these genes to distinguish healthy controls and patients with SS. RESULTS ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were all upregulated in PBMCs of patients with SS. Area under the ROC curve (AUC) of the 8 ISGs were all more than 0.5. IFIT3 exhibited the highest diagnostic value, followed by AIM2, IFIT2 and CXCL10, according to the Yoden Index. CONCLUSION ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were upregulated in patients with SS and they have diagnostic value for syphilis.
Collapse
|
8
|
Mears HV, Emmott E, Chaudhry Y, Hosmillo M, Goodfellow IG, Sweeney TR. Ifit1 regulates norovirus infection and enhances the interferon response in murine macrophage-like cells. Wellcome Open Res 2019; 4:82. [PMID: 31372503 PMCID: PMC6668250 DOI: 10.12688/wellcomeopenres.15223.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Norovirus, also known as the winter vomiting bug, is the predominant cause of non-bacterial gastroenteritis worldwide. Disease control is predicated on a robust innate immune response during the early stages of infection. Double-stranded RNA intermediates generated during viral genome replication are recognised by host innate immune sensors in the cytoplasm, activating the strongly antiviral interferon gene programme. Ifit proteins (interferon induced proteins with tetratricopeptide repeats), which are highly expressed during the interferon response, have been shown to directly inhibit viral protein synthesis as well as regulate innate immune signalling pathways. Ifit1 is well-characterised to inhibit viral translation by sequestration of eukaryotic initiation factors or by directly binding to the 5' terminus of foreign RNA, particularly those with non-self cap structures. However, noroviruses have a viral protein, VPg, covalently linked to the 5' end of the genomic RNA, which acts as a cap substitute to recruit the translation initiation machinery. Methods: Ifit1 knockout RAW264.7 murine macrophage-like cells were generated using CRISPR-Cas9 gene editing. These cells were analysed for their ability to support murine norovirus infection, determined by virus yield, and respond to different immune stimuli, assayed by quantitative PCR. The effect of Ifit proteins on norovirus translation was also tested in vitro. Results: Here, we show that VPg-dependent translation is completely refractory to Ifit1-mediated translation inhibition in vitro and Ifit1 cannot bind the 5' end of VPg-linked RNA. Nevertheless, knockout of Ifit1 promoted viral replication in murine norovirus infected cells. We then demonstrate that Ifit1 promoted interferon-beta expression following transfection of synthetic double-stranded RNA but had little effect on toll-like receptor 3 and 4 signalling. Conclusions: Ifit1 is an antiviral factor during norovirus infection but cannot directly inhibit viral translation. Instead, Ifit1 stimulates the antiviral state following cytoplasmic RNA sensing, contributing to restriction of norovirus replication.
Collapse
Affiliation(s)
- Harriet V. Mears
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
| | - Edward Emmott
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
- Office 332, Mugar Life Sciences Building 360 Huntington Ave, Northeastern University, Boston, MA, 02115-5000, USA
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology,, University of Cambridge Addenbrooke's Hospital Cambridge, Hills Road, Cambridge, CB29NJ, UK
| |
Collapse
|