1
|
Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X, Meng X. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol 2022; 925:175015. [PMID: 35561751 DOI: 10.1016/j.ejphar.2022.175015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Salidroside (Sal), an active ingredient from Rhodiola crenulate, has been reported to exert neuroprotection in cerebral injury from hypobaric hypoxia (HH) at high altitude. However, it remains to be understood whether its protective effects are related to inflammation suppression. In the present work, we aimed to reveal the mechanism of Sal attenuating HH-induced brain injury in mice caused by an animal hypobaric and hypoxic chamber. Our results provided that Sal could attenuate HH-evoked pathological injury and oxidative stress response by decreasing the content of ROS and MDA, and elevating the activities of SOD and GSH-Px. Sal treatment could partly enhance the energy metabolism, evidenced by increasing the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, ATP, SDH, HK and PK, while decreasing the release of LDH and LD. Meanwhile, Sal administration reversed the degradation of tight junction proteins ZO-1, Occludin and Claudin-5. Further, the increased levels of TNF-α, IL-1β and IL-6 were confined with Sal administration under the HH condition. Importantly, Sal could downregulate the proteins expression of p-NF-κB-p65, NLRP3, cleaved-Caspase-1 and ASC. Sal also decreased the protein expression of iNOS and COX2 with the increased CD206 and Arg1 expression. Taken together, these data provided that the inhibited NF-κB/NLRP3 pathway by Sal could attenuate HH-induced cerebral oxidative stress injury, inflammatory responses and the blood brain barrier (BBB) damage, attributing to the improved energy metabolism and the microglial phenotype of anti-inflammatory M2. The findings suggested that Sal was expected to be a promising anti-inflammatory agent for high altitude HH-induced brain injury.
Collapse
Affiliation(s)
- Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lu Yang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ke Chen
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihao Sun
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nanjia Cairang
- University of Tibetan Medicine, Lasa, Tibet, 850000, China.
| | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Diniz C, Suliburska J, Ferreira IMPLVO. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol Nutr Food Res 2017; 61. [PMID: 27981783 DOI: 10.1002/mnfr.201600912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals.
Collapse
Affiliation(s)
- Carmen Diniz
- LAQV/REQUIMTE-Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE-Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Chawla S, Rahar B, Saxena S. S1P prophylaxis mitigates acute hypobaric hypoxia-induced molecular, biochemical, and metabolic disturbances: A preclinical report. IUBMB Life 2016; 68:365-75. [PMID: 26959531 DOI: 10.1002/iub.1489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/13/2016] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is emerging to have hypoxic preconditioning potential in various preclinical studies. The study aims to evaluate the preclinical preconditioning efficacy of exogenously administered S1P against acute hypobaric hypoxia (HH)-induced pathological disturbances. Male Sprague Dawley rats (200 ± 20 g) were preconditioned with 1, 10, and 100 μg/kg body weight (b.w.) S1P (i.v.) for three consecutive days. On the third day, S1P preconditioned animals, along with hypoxia control animals, were exposed to HH equivalent to 7,620 m (280 mm Hg) for 6 h. Postexposure status of cardiac energy production, circulatory vasoactive mediators, pulmonary and cerebral oxidative damage, and inflammation were assessed. HH exposure led to cardiac energy deficit indicated by low ATP levels and pronounced AMPK activation levels, raised circulatory levels of brain natriuretic peptide and endothelin-1 with respect to total nitrate (NOx), redox imbalance, inflammation, and alterations in NOx levels in the pulmonary and cerebral tissues. These pathological precursors have been routinely reported to be coincident with high-altitude diseases. Preconditioning with S1P, especially 1 µg/kg b.w. dose, was seen to reverse the manifestation of these pathological disturbances. The protective efficacy could be attributed, at least in part, to enhanced activity of cardioprotective protein kinase C and activation of small GTPase Rac1, which led to further induction of hypoxia-adaptive molecular mediators: hypoxia-inducible factor (HIF)-1α and Hsp70. This is a first such report, to the best of our knowledge, elucidating the mechanism of exogenous S1P-mediated HIF-1α/Hsp70 induction. Conclusively, systemic preconditioning with 1 μg/kg b.w. S1P in rats protects against acute HH-induced pathological disturbances. © 2016 IUBMB Life 68(5):365-375, 2016.
Collapse
Affiliation(s)
- Sonam Chawla
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Babita Rahar
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| | - Shweta Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi, India
| |
Collapse
|