1
|
Di Stasi LC. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040511. [PMID: 37111267 PMCID: PMC10142712 DOI: 10.3390/ph16040511] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
2
|
Patagar DN, Batakurki SR, Kusanur R, Patra SM, Saravanakumar S, Ghate M. Synthesis, Antioxidant and Anti-diabetic potential of novel benzimidazole substituted coumarin-3-carboxamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
4
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
5
|
Kordulewska NK, Topa J, Rozmus D, Jarmołowska B. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci 2021; 22:ijms222413634. [PMID: 34948440 PMCID: PMC8708099 DOI: 10.3390/ijms222413634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Hyperactivity of the immune system in the gastrointestinal tract leads to the development of chronic, inflammation-associated disorders. Such diseases, including inflammatory bowel disease, are not completely curable, but the specific line of treatment may reduce its symptoms. However, the response to treatment varies among patients, creating a necessity to uncover the pathophysiological basis of immune-mediated diseases and apply novel therapeutic strategies. The present study describes the anti-inflammatory properties of osthole during histamine-induced inflammation in the intestinal Caco-2 cell line. Osthole reduced the secretion of cytokines (CKs) and the expression level of inflammation-associated genes, which were increased after a histamine treatment. We have shown that the secretion of pro-inflammatory CKs (IL-1β, IL-6, IL-8, and TNF-α) during inflammation may be mediated by NFκB, and, after osthole treatment, this signaling pathway was disrupted. Our results suggest a possible role for osthole in the protection against inflammation in the gastrointestinal tract; thus, osthole may be considered as an anti-inflammatory modulator.
Collapse
Affiliation(s)
- Natalia K. Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (N.K.K.); (J.T.); Tel.: +48-89-523-37-63 (N.K.K.); +48-58-349-14-38 (J.T.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (D.R.); (B.J.)
| |
Collapse
|
6
|
Yu Y, Chen M, Yang S, Shao B, Chen L, Dou L, Gao J, Yang D. Osthole enhances the immunosuppressive effects of bone marrow-derived mesenchymal stem cells by promoting the Fas/FasL system. J Cell Mol Med 2021; 25:4835-4845. [PMID: 33749126 PMCID: PMC8107110 DOI: 10.1111/jcmm.16459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Thanks to the advantages of easy harvesting and escape from immune rejection, autologous bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for immunosuppressive therapy against inflammation and autoimmune diseases. However, the therapy is still challenging because the immunomodulatory properties of BMSCs are always impaired by immunopathogenesis in patients. Because of its reliable and extensive biological activities, osthole has received increased clinical attention. In this study, we found that BMSCs derived from osteoporosis donors were ineffective in cell therapy for experimental inflammatory colitis and osteoporosis. In vivo and in vitro tests showed that because of the down-regulation of Fas and FasL expression, the ability of osteoporotic BMSCs to induce T-cell apoptosis decreased. Through the application of osthole, we successfully restored the immunosuppressive ability of osteoporotic BMSCs and improved their treatment efficacy in experimental inflammatory colitis and osteoporosis. In addition, we found the immunomodulatory properties of BMSCs were enhanced after osthole pre-treatment. In this study, our data highlight a new approach of pharmacological modification (ie osthole) to improve the immune regulatory performance of BMSCs from a healthy or inflammatory microenvironment. The development of targeted strategies to enhance immunosuppressive therapy using BMSCs may be significantly improved by these findings.
Collapse
Affiliation(s)
- Yang Yu
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Meng Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Shiyao Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Liang Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Lei Dou
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jing Gao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Deqin Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
7
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2020; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
Wang L, Zheng S, Huang G, Sun J, Pan Y, Si Y, Tu P, Xu G, Ma Y, Guo Y. Osthole-loaded N-octyl-O-sulfonyl chitosan micelles (NSC-OST) inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in rats. J Cell Mol Med 2020; 24:4105-4117. [PMID: 32126148 PMCID: PMC7171421 DOI: 10.1111/jcmm.15064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Osthole (OST), a derivative of Fructus Cnidii, has been proved to have potential anti‐osteoporosis effects in our recent studies. However, its pharmacological effects are limited in the human body because of poor solubility and bioavailability. Under the guidance of the classical theory of Chinese medicine, Osthole‐loaded N‐octyl‐O‐sulfonyl chitosan micelles (NSC‐OST), which has not previously been reported in the literature, was synthesized in order to overcome the defects and obtain better efficacy. In this study, we found that NSC‐OST inhibited on the formation and resorption activity of osteoclasts through using a bone marrow macrophage (BMM)‐derived osteoclast culture system in vitro, rather than affecting the viability of cells. We also found that NSC‐OST inhibited osteoclast formation, hydroxyapatite resorption and RANKL‐induced osteoclast marker protein expression. In terms of mechanism, NSC‐OST suppressed the NFATc1 transcriptional activity and the activation of NF‐κB signalling pathway. In vivo, ovariectomized (OVX) rat models were established for further research. We found that NSC‐OST can attenuate bone loss in OVX rats through inhibiting osteoclastogenesis. Consistent with our hypothesis, NSC‐OST is more effective than OST in parts of the results. Taken together, our findings suggest that NSC‐OST can suppress RANKL‐induced osteoclastogenesis and prevents ovariectomy‐induced bone loss in rats and could be considered a safe and more effective anti‐osteoporosis drug than OST.
Collapse
Affiliation(s)
- Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyang Zheng
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guicheng Huang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Si
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guihua Xu
- TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin. Bioorg Chem 2019; 92:103212. [PMID: 31465968 DOI: 10.1016/j.bioorg.2019.103212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022]
Abstract
A series of novel coumarin-cyclic imide conjugates (1a-1j) were designed and synthesized to evaluate their glucose uptake activity by insulin resistant liver hepatocyte carcinoma (HepG2) cells through 2-NBDG uptake assay. Compounds (1a-1j) were characterised using various analytical methods such as 1H NMR, 13C NMR, IR, GC-MS, elemental and single-crystal X-ray diffraction techniques. Compounds (1a-1j) exhibited 85.21 - 65.80% of glucose uptake and showed low level of cytotoxicity towards human embryonic kidney cells (HEK-293) indicating good selectivity and safety profile. Compound 1f was identified as a hit candidate exhibiting 85.21% of glucose uptake which was comparable with standard antidiabetic drug Metformin (93.25% glucose uptake). Solution stability study under physiological pH conditions ≈ (3.4 - 8.7), indicates that compound 1f is sufficiently stable at varied pH conditions and thereby compatible with bio-physiological environments. Interaction of 1f with human serum albumin (HSA) were also studied which quantifies that compound 1f binds with HSA efficiently through facile binding reaction in solution. Fluorescence, UV-vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1f with protein.
Collapse
|
10
|
Wang R, Liu Y, Hu X, Pan J, Gong D, Zhang G. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res Int 2019; 120:226-234. [DOI: 10.1016/j.foodres.2019.02.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
11
|
Zhou WB, Zhang XX, Cai Y, Sun W, Li H. Osthole prevents tamoxifen-induced liver injury in mice. Acta Pharmacol Sin 2019; 40:608-619. [PMID: 30315252 DOI: 10.1038/s41401-018-0171-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023] Open
Abstract
Tamoxifen (TMX) is an antiestrogen drug that is used in the treatment and prevention of all stages of estrogen-dependent breast cancer. Adverse effects of TMX include hepatotoxicity. In this study, we investigated the therapeutic effects of osthole, isolated from medicinal plants especially Fructus Cnidii, on TMX-induced acute liver injury in mice. Mice were injected with osthole (100 mg/kg, ip) or vehicle, followed by TMX (90 mg/kg, ip) 24 h later. We showed that a single injection of TMX-induced liver injury and oxidative stress. Pretreatment with osthole attenuated TMX-induced liver injury evidenced by dose-dependent reduction of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Pretreatment with osthole also blunted TMX-induced oxidative stress, evidenced by significant increase of reduced glutathione (GSH) as well as reduction of malondialdehyde (MDA) and hydrogen peroxide (H2O2). Consistently, osthole significantly enhanced the expressions of antioxidant genes (GPX1, SOD2, GCL-c, and G6pdh), but suppressed those of pro-oxidant genes (NOX2 and ACOX). Furthermore, osthole inhibited the production of inflammatory cytokines, reduced the metabolic activation of TMX, and promoted its clearance. We further revealed that osthole elevated hepatic cAMP and cGMP levels, but inhibition of PKA or PKG failed to abolish the hepatoprotective effect of osthole. Meanwhile, prominent phosphorylation of p38 was observed in liver in response to TMX, which was significantly inhibited by osthole. Pretreatment with SB203580, a p38 inhibitor, significantly attenuated TMX-induced increase of ALT and AST activities, reduced oxidative stress, and reversed the alterations of gene expression caused by TMX. Moreover, pretreatment with L-buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, partly reversed the effect of osthole on TMX-induced liver injury. Consistently, pretreatment with N-acetyl-L-cysteine (NAC) significantly attenuated TMX-induced increase in ALT and AST activities. Notably, both BSO and NAC had no detectable effect on the phosphorylation levels of p38. Collectively, our results suggest that osthole prevents TMX hepatotoxicity by suppressing p38 activation and subsequently reducing TMX-induced oxidative damage.
Collapse
|
12
|
Huang WC, Wu LY, Hu S, Wu SJ. Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells. Inflammation 2019; 41:1934-1944. [PMID: 29959625 DOI: 10.1007/s10753-018-0837-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE2, COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33303, Taiwan
| | - Ling-Yu Wu
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.,Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Shu-Ju Wu
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.
| |
Collapse
|
13
|
Liu ZC, Wang ZL, Huang CY, Fu ZJ, Liu Y, Wei ZC, Liu SG, Ma C, Shen JL, Duan DD. Duhuo Jisheng Decoction inhibits SDF-1-induced inflammation and matrix degradation in human degenerative nucleus pulposus cells in vitro through the CXCR4/NF-κB pathway. Acta Pharmacol Sin 2018; 39:912-922. [PMID: 29795361 DOI: 10.1038/aps.2018.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Lower back pain (LBP) is the most common disease in orthopedic clinics world-wide. A classic Fangji of traditional Chinese medicine, Duhuo Jisheng Decoction (DHJSD), has been proven clinically effective for LBP but its therapeutic mechanisms remain unclear. We hypothesized that DHJSD might relieve LBP through inhibiting the exaggerated proinflammatory cytokines and extracellular matrix (ECM) degradation. Thus, we studied the effects of DHJSD on stromal cell-derived factor-1 (SDF-1)-induced inflammation and ECM degradation in human nucleus pulposus cells (hNPCs). The primary hNPCs were isolated from either degenerated human intervertebral disc (HID) of LBP patients or normal HID of lumbar vertebral fracture patients, and cultured in vitro. The cells were treated with SDF-1 (10 ng/mL) and subsequently with different concentrations (100-500 μg/mL) of DHJSD for 24 h, respectively. We found that application of DHJSD significantly antagonized the SDF-1-induced production of proinflammatory cytokines and reduction of aggrecan and type II collagen in the hNPCs. DHJSD also markedly reduced the SDF-1-induced increase of CXCR4 and p-p65 and inhibited the nuclear translocation of p65 in the hNPCs. DHJSD, CXCR4-siRNA, and NF-κB inhibitor (BAY11-7082) caused the same inhibition of exaggerated proinflammatory cytokines in the SDF-1-treated hNPCs. These results provided compelling evidence that DHJSD may inhibit the generation of proinflammatory mediators and ECM degradation of HID through an orchestrated targeting at multiple molecules in the SDF-1/CXCR4/NF-κB pathway, thus offered novel mechanistic insights into the clinical effectiveness of DHJSD on LBP.
Collapse
|
14
|
Yao Y, Zhao X, Xin J, Wu Y, Li H. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can J Physiol Pharmacol 2018; 96:765-771. [PMID: 29641229 DOI: 10.1139/cjpp-2017-0612] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coumarins extensively exist in plants and are utilized against diabetes in some folk medicines. Recent studies have demonstrated that oxidative stress plays a crucial role in the etiology and pathogenesis of diabetes mellitus. We investigated the antioxidant ability of 3 coumarins (osthole, esculin, and fraxetin) in type 2 diabetes. After being fed a high-fat diet, ICR mice were exposed to low doses of streptozotocin and then treated with experimental coumarins for 5 weeks. We found osthole, esculin, and metformin significantly lowered fasting blood glucose, HOMA-IR, and 3 blood lipids (total cholesterol, total triglyceride, free fatty acids), and increased insulin levels, while fraxetin only enhanced insulin levels and lessened free fatty acids. Both osthole and esculin had antioxidative effects in pancreas through elevating the activities of glutathione peroxidase, catalase, and superoxide dismutase; fraxetin, however, merely heightened catalase activity. By contrast, 3 coumarins significantly increased those antioxidase activities in liver. Hematoxylin and eosin staining revealed 3 coumarins, especially osthole, attenuated cellular derangement, blurry fringes of hepatic sinusoid and extensive vacuolization due to hepatocellular lipid accumulation, and lessened inflammatory infiltration in pancreas. The glomerular and islet structure of diabetic mice were improved, with reduced mesangial matrix and glomerular basement membrane thickening. Therefore, our study supports that coumarins could be promising candidates against type 2 diabetes through antioxidative mechanisms.
Collapse
Affiliation(s)
- Yuanfa Yao
- a Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, China.,b College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuqin Zhao
- a Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinxia Xin
- a Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingqi Wu
- a Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanbing Li
- a Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, China.,c Section of Endocrinology, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Bao Y, Meng X, Liu F, Wang F, Yang J, Wang H, Xie G. Protective effects of osthole against inflammation induced by lipopolysaccharide in BV2 cells. Mol Med Rep 2018; 17:4561-4566. [DOI: 10.3892/mmr.2018.8447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/01/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuxin Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xiaolin Meng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Fangning Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Fei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Jinhui Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Haiyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Guanghong Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
16
|
Sun W, Cai Y, Zhang XX, Chen H, Lin YD, Li H. Osthole pretreatment alleviates TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways. Acta Pharmacol Sin 2017; 38:1120-1128. [PMID: 28603288 DOI: 10.1038/aps.2017.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Osthole, a natural coumarin found in traditional Chinese medicinal plants, has shown multiple biological activities. In the present study, we investigated the preventive effects of osthole on inflammatory bowel disease (IBD). Colitis was induced in mice by infusing TNBS into the colonic lumen. Before TNBS treatment, the mice received osthole (100 mg·kg-1·d-1, ip) for 3 d. Pretreatment with osthole significantly ameliorated the clinical scores, colon length shortening, colonic histopathological changes and the expression of inflammatory mediators in TNBS-induced colitis. Pretreatment with osthole elevated serum cAMP levels; but treatment with the PKA inhibitor H89 (10 mg·kg-1·d-1, ip) did not abolish the beneficial effects of osthole on TNBS-induced colitis. In mouse peritoneal macrophages, pretreatment with osthole (50 μmol/L) significantly attenuated the LPS-induced elevation of cytokines at the mRNA level; inhibition of PKA completely reversed the inhibitory effects of osthole on IL-1β, IL-6, COX2, and MCP-1 but not on TNFα. In Raw264.7 cells, the p38 inhibitor SB203580 markedly suppressed LPS-induced upregulation of the cytokines, whereas the PKA inhibitors H89 or KT5720 did not abolish the inhibitory effects of SB203580. Moreover, in LPS-stimulated mouse peritoneal macrophages, SB203580 strongly inhibited the restored expression of IL-1β, IL-6, COX2, and MCP-1, which was achieved by abolishing the suppressive effects of osthole with the PKA inhibitors. Western blot analysis showed that osthole significantly suppressed the phosphorylation of p38, which was induced by TNBS in mice or by LPS in Raw264.7 cells. Inhibition of PKA partially reversed the suppressive effects of osthole on p38 phosphorylation in LPS-stimulated cells. Collectively, our results suggest that osthole is effective in the prevention of TNBS-induced colitis by reducing the expression of inflammatory mediators and attenuating p38 phosphorylation via both cAMP/PKA-dependent and independent pathways, among which the cAMP/PKA-independent pathway plays a major role.
Collapse
|
17
|
Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. ACTA ACUST UNITED AC 2017; 69:1253-1264. [PMID: 28675434 DOI: 10.1111/jphp.12774] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/28/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Even with great advances in modern medicine and therapeutic agent development, the search for effective antidiabetic drugs remains challenging. Coumarins are secondary metabolites found widely in nature plants and used mainly in anticoagulation and antithrombotic therapy. Over the past two decades, however, there has been an increasing body of literatures related to the effects of coumarins and their derivatives on diabetes and its complications. This review aimed to focus on research findings concerning the effects of coumarins against diabetes and its complications using in-vitro and in-vivo animal models, and also to discuss cellular and molecular mechanisms underlying these effects. KEY FINDINGS The search for new coumarins against diabetes and it complications, either isolated from traditional medicine or chemically synthesized, has been constantly expanding. The cellular and molecular mechanisms involved include protecting pancreatic beta cells from damage, improving abnormal insulin signalling, reducing oxidative stress/inflammation, activating AMP-activated protein kinase (AMPK), inhibiting α-glucosidases and ameliorating diabetic complications. CONCLUSIONS The effects and mechanisms of coumarins and their derivatives upon diabetes and its complications are discussed in current review. Further investigations remain to be carried out to develop a promising antidiabetic agent based on coumarin cores.
Collapse
Affiliation(s)
- Hanbing Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China.,Section of Endocrinology, School of Medicine, Yale University, New Haven, USA
| | - Yuanfa Yao
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Linghuan Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Osthole attenuates lipid accumulation, regulates the expression of inflammatory mediators, and increases antioxidants in FL83B cells. Biomed Pharmacother 2017; 91:78-87. [PMID: 28448873 DOI: 10.1016/j.biopha.2017.04.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/30/2022] Open
Abstract
Osthole is found in Cnidium monnieri (L.) and has anti-inflammatory and anti-oxidative properties. It also inhibits the proliferation of hepatocellular carcinoma cells. This study aimed to evaluate the osthole suppressive nonalcoholic fatty liver disease effects in oleic acid (OA)-induced hepatic steatosis and if it can modulate inflammatory responses and oxidative stress. FL83B cells were pretreated with OA (250μΜ) for 24h, and then added different concentrations of osthole (3-100μM) for 24h. Subsequently, lipolysis and transcription factors of adipogenesis and phosphorylation of AMP-activated protein kinase proteins were measured. In addition, cells with OA-induced steatosis were H2O2-stimulated, and then incubated with osthole to evaluated if it could suppress its progression to steatohepatitis. Osthole significantly enhanced glycerol release and lipolysis protein expression. Osthole also promoted phosphorylation of AMP-activated protein kinases and increased the activity of triglyceride lipase and hormone- sensitive lipase. Osthole suppressed the nuclear transcription factor kappa-B and the p38 mitogen-activated protein kinase pathway, and decreased the malondialdehyde concentration in FL83B cells with OA-induced steatosis that were treated with H2O2. These results suggest that osthole might suppress nonalcoholic fatty liver disease by decreasing lipid accumulation, and through its anti-oxidative and anti-inflammatory effects via blocked NF-κB and MAPK signaling pathways.
Collapse
|
19
|
Revankar HM, Bukhari SNA, Kumar GB, Qin HL. Coumarins scaffolds as COX inhibitors. Bioorg Chem 2017; 71:146-159. [DOI: 10.1016/j.bioorg.2017.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
|
20
|
Du-Huo-Ji-Sheng-Tang Attenuates Inflammation of TNF-Tg Mice Related to Promoting Lymphatic Drainage Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7067691. [PMID: 27239212 PMCID: PMC4863122 DOI: 10.1155/2016/7067691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
To investigate whether Du-Huo-Ji-Sheng-Tang (DHJST) attenuate inflammation of RA related to lymphatic drainage function in vivo, we treated eight 3-month-old TNF-Tg mice with DHJST (12 g/kg) or the same volume of physiological saline once every day for 12 weeks, and 3-month-old WT littermates were used as negative control. After twelve weeks, we performed NIR-ICG imaging and found that DHJST increased the ICG clearance at the footpad and the pulse of efferent lymphatic vessel between popliteal lymph node and footpad. Histology staining at ankle joints showed that DHJST decreases synovial inflammation, bone erosion, cartilage erosion, and TRAP+ osteoclast area in TNF-Tg mice. Immunohistochemical staining by using anti-Lyve-1 and anti-podoplanin antibody showed that DHJST stimulated lymphangiogenesis in ankle joints of TNF-Tg mice. And zebrafish study suggested that DHJST promoted the formation of lymphatic thoracic duct. In conclusion, DHJST inhibits inflammation severity and promotes lymphangiogenesis and lymphatic drainage function of TNF-Tg mice.
Collapse
|
21
|
Inhibition of osteolysis after local administration of osthole in a TCP particles-induced osteolysis model. INTERNATIONAL ORTHOPAEDICS 2015; 40:1545-52. [PMID: 26498175 DOI: 10.1007/s00264-015-3021-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Wear debris-induced osteolysis and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. However, no effective measures for the prevention and treatment of particles-induced osteolysis currently exist. Here, we investigated the efficacy of local administration of osthole on tricalcium phosphate (TCP) particles-induced osteolysis in a murine calvarial model. METHODS TCP particles were implanted over the calvaria of ICR mice, and established TCP particles-induced osteolysis model. On days one, four, seven, ten and thirteen post-surgery, osthole (10 mg/kg) or phosphate buffer saline (PBS) were subcutaneously injected into the calvaria of TCP particles-implanted or sham-operated mice. Two weeks later, blood, the periosteum and the calvaria were collected and processed for bone turnover markers, pro-inflammatory cytokine, histomorphometric and molecular analysis. RESULTS Osthole (10 mg/kg) markedly prevented TCP particles-induced osteoclastogenesis and bone resorption in a mouse calvarial model. Osthole also inhibited the decrease of serum osteocalcin level and calvarial alkaline phosphatase (ALP) activity, and prevented the increase in the activity of tartrate resistant acid phosphatase (TRAP) and cathepsin K in the mouse calvaria. Furthermore, osthole obviously reduced the release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the periosteum. Western blotting demonstrated TCP particles caused a remarkable endoplasmic reticulum (ER) stress response in the mouse calvaria, which was obviously blocked by osthole treatment. CONCLUSION These results suggest that local administration of osthole inhibits TCP particles-induced osteolysis in the mouse calvarial in vivo, which may be mediated by inhibition of the ER stress signaling pathway, and it will be developed as a new drug in the prevention and treatment of destructive diseases caused by prosthetic wear particles.
Collapse
|