1
|
Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin 2023:10.1038/s41401-023-01058-x. [PMID: 36765267 DOI: 10.1038/s41401-023-01058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 μg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1β in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.
Collapse
|
2
|
Huang YH, Xie C, Chou CY, Jin Y, Li W, Wang M, Lu Y, Liu Z. Subtyping intractable functional constipation in children using clinical and laboratory data in a classification model. Front Pediatr 2023; 11:1148753. [PMID: 37168808 PMCID: PMC10165123 DOI: 10.3389/fped.2023.1148753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Background Children with intractable functional constipation (IFC) who are refractory to traditional pharmacological intervention develop severe symptoms that can persist even in adulthood, resulting in a substantial deterioration in their quality of life. In order to better manage IFC patients, efficient subtyping of IFC into its three subtypes, normal transit constipation (NTC), outlet obstruction constipation (OOC), and slow transit constipation (STC), at early stages is crucial. With advancements in technology, machine learning can classify IFC early through the use of validated questionnaires and the different serum concentrations of gastrointestinal motility-related hormones. Method A hundred and one children with IFC and 50 controls were enrolled in this study. Three supervised machine-learning methods, support vector machine, random forest, and light gradient boosting machine (LGBM), were used to classify children with IFC into the three subtypes based on their symptom severity, self-efficacy, and quality of life which were quantified using certified questionnaires and their serum concentrations of the gastrointestinal hormones evaluated with enzyme-linked immunosorbent assay. The accuracy of machine learning subtyping was evaluated with respect to radiopaque markers. Results Of 101 IFC patients, 37 had NTC, 49 had OOC, and 15 had STC. The variables significant for IFC subtype classification, according to SelectKBest, were stool frequency, the satisfaction domain of the Patient Assessment of Constipation Quality of Life questionnaire (PAC-QOL), the emotional self-efficacy for Functional Constipation questionnaire (SEFCQ), motilin serum concentration, and vasoactive intestinal peptide serum concentration. Among the three models, the LGBM model demonstrated an accuracy of 83.8%, a precision of 84.5%, a recall of 83.6%, a f1-score of 83.4%, and an area under the receiver operating characteristic curve (AUROC) of 0.89 in discriminating IFC subtypes. Conclusion Using clinical characteristics measured by certified questionnaires and serum concentrations of the gastrointestinal hormones, machine learning can efficiently classify pediatric IFC into its three subtypes. Of the three models tested, the LGBM model is the most accurate model for the classification of IFC, with an accuracy of 83.8%, demonstrating that machine learning is an efficient tool for the management of IFC in children.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Chenjia Xie
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Chih-Yi Chou
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu Jin
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Wei Li
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wang
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| | - Zhifeng Liu
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
- Correspondence: Yan Lu Zhifeng Liu
| |
Collapse
|
3
|
Gao J, Liu Y, Chen J, Tong C, Wang Q, Piao Y. Curcumin treatment attenuates cisplatin-induced gastric mucosal inflammation and apoptosis through the NF- κ B and MAPKs signaling pathway. Hum Exp Toxicol 2022; 41:9603271221128738. [DOI: 10.1177/09603271221128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To investigate the protective effects of curcumin (Cur) on gastric mucosal injury induced by cisplatin (DDP), and explore possible molecular mechanisms. A mouse of gastric mucosal injury was established by intraperitoneal injection of DDP (27 mg/kg). Thirty mice were randomly divided into control group, DDP group and DDP + Cur group. Serum and gastric mucosal samples were collected on the 7th day after Cur treatment. The index of gastric mucosa injury was calculated, and the expression levels of inflammation, apoptosis and signaling pathway proteins were evaluated using hematoxylin and eosin staining, ELISA and western blotting analysis. These data showed that Cur treatment significantly attenuated DDP-induced decrease in body weight, food intake, fat and muscle ratios, and improved the gross gastric injury, scores of ulcer index, and histopathology changes triggered by DDP ( p < .05). Meanwhile, Cur significantly decreased serum IL-23 and IL-17 proteins, reduced the expression levels of gastric mucosal IL-1β, TNF- α and MPO, and restored the level of IL-10 protein ( p < .05). Moreover, Cur treatment significantly inhibited the expression levels of Caspase-3, PARP and Bax, and increased the expression of Bcl-2 protein. Furthermore, Cur treatment significantly decreased the expression levels of IL-1R, MyD88 and TAK1, and also repressed the activation of NF-κB and nuclear translocation of NF-κB p65. And more importantly, Cur treatment significantly inhibited DDP-induced gastric mucosal JNK1/2, ASK1, P38 and JUN phosphorylation, and promoted the phosphorylation of ERK1/2 and C-Myc proteins. Our data suggest that Cur treatment alleviates DDP-induced gastric mucosal inflammation and apoptosis, which may be mediated through the NF- κ B and MAPKs signaling pathway.
Collapse
Affiliation(s)
- Jinping Gao
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Yunen Liu
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Juan Chen
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Changci Tong
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Qian Wang
- Department of Oncology, Shengjing Hospital of China Medical University, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, China
| |
Collapse
|
4
|
Effects of Curcumin in a Mouse Model of Very High Fat Diet-Induced Obesity. Biomolecules 2020; 10:biom10101368. [PMID: 32992936 PMCID: PMC7650718 DOI: 10.3390/biom10101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Worldwide rates of Western-diet-induced obesity epidemics are growing dramatically. Being linked with numerous comorbidities and complications, including cardiovascular disease, type 2 diabetes, cancer, chronic inflammation, and osteoarthritis (OA), obesity represents one of the most threatening challenges for modern healthcare. Mouse models are an invaluable tool for investigating the effects of diets and their bioactive components against high fat diet (HFD)-induced obesity and its comorbidities. During recent years, very high fat diets (VHFDs), providing 58–60% kcal fat, have become a popular alternative to more traditional HFDs, providing 40–45% total kcal fat, due to the faster induction of obesity and stronger metabolic responses. This project aims to investigate if the 60% fat VHFD is suitable to evaluate the protective effects of curcumin in diet-induced obesity and osteoarthritis. B6 male mice, prone to diet-induced metabolic dysfunction, were supplemented with VHFD without or with curcumin for 13 weeks. Under these experimental conditions, feeding mice a VHFD for 13 weeks did not result in expected robust manifestations of the targeted pathophysiologic conditions. Supplementing the diet with curcumin, in turn, protected the animals against obesity without significant changes in white adipocyte size, glucose clearance, and knee cartilage integrity. Additional research is needed to optimize diet composition, curcumin dosage, and duration of dietary interventions to establish the VHFD-induced obesity for evaluating the effects of curcumin on metabolic dysfunctions related to obesity and osteoarthritis.
Collapse
|
5
|
Huang L, Ye M, Wu J, Liu W, Chen H, Rui W. A metabonomics and lipidomics based network pharmacology study of qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1146:122102. [PMID: 32330807 DOI: 10.1016/j.jchromb.2020.122102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Honey-processed Astragalus is a dosage form of radix Astragali processed with honey, which is deemed to contain better qi-tonifying effects in traditional Chinese medicine theroy. Our previous study has demonstrated that honey-processed Astragalus exhibited a better effect on reinforcing qi (vital energy) and immune improvement toward spleen qi deficiency compared with radix Astragali. However, the detailed mechanisms related to qi-tonifying effects of honey-processed Astragalus is still unclear. In this study, we evaluated the qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats and predicted the mechanisms by aggregating metabonomics, lipidomics and network pharmacology. The results revealed that body weights, symptom scores, the levels of red blood cell, white blood cell, lymphocyte, spleen and thymus indexes, and three cytokines (TNF-α, IL-6, IFN-γ) in honey-processed Astragalus treated rats were improved in comparison with spleen qi deficiency rats. In parallel, based on the 26 biomarkers screened in metabonomics and lipidomics, we inferred that glycerophospholipid metabolism significantly regulated in pathway analysis was connected with qi-tonifying effects. Moreover, the network pharmacology analysis concluded that the compounds targets of honey-processed Astragalus CDK2, NOS3, MAPK14, PTGS1 and PTGS2 interacted with markers targets PLA2G(s) family and LYPLA1 could be responsible for regulation of glycerophospholipid metabolism to develop qi-tonifying effects. What's more, the above processes were possibly through VEGF signaling and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Huang
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Mingzhu Ye
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Jiacai Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Wuping Liu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Cosmetics Engineering & Technology Research Center, 510006 Guangzhou, People's Republic of China
| | - Wen Rui
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Key Laboratory of Digital Quality Evaluation of Chinese Materia of State Administration of TCM, 510006 Guangzhou, People's Republic of China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Cosmetics Engineering & Technology Research Center, 510006 Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Lopresti AL. The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? Adv Nutr 2018; 9:41-50. [PMID: 29438458 PMCID: PMC6333932 DOI: 10.1093/advances/nmx011] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Curcumin, from the spice turmeric, exhibits anti-inflammatory, antioxidant, anticancer, antiviral, and neurotrophic activity and therefore holds promise as a therapeutic agent to prevent and treat several disorders. However, a major barrier to curcumin's clinical efficacy is its poor bioavailability. Efforts have therefore been dedicated to developing curcumin formulations with greater bioavailability and systemic tissue distribution. However, it is proposed in this review that curcumin's potential as a therapeutic agent may not solely rely on its bioavailability, but rather its medicinal benefits may also arise from its positive influence on gastrointestinal health and function. In this review, in vitro, animal, and human studies investigating the effects of curcumin on intestinal microbiota, intestinal permeability, gut inflammation and oxidative stress, anaphylactic response, and bacterial, parasitic, and fungal infections are summarized. It is argued that positive changes in these areas can have wide-ranging influences on both intestinal and extraintestinal diseases, and therefore presents as a possible mechanism behind curcumin's therapeutic efficacy.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia,Address correspondence to ALL (e-mail: )
| |
Collapse
|
7
|
Islek A, Yilmaz A, Elpek GO, Erin N. Childhood chronic gastritis and duodenitis: Role of altered sensory neuromediators. World J Gastroenterol 2016; 22:8349-8360. [PMID: 27729741 PMCID: PMC5055865 DOI: 10.3748/wjg.v22.i37.8349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the roles of the neuropeptides vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene-related peptide (CGRP) in chronic gastritis and duodenitis in children.
METHODS Biopsy samples from the gastric and duodenal mucosa of 52 patients and 30 control subjects were obtained. Samples were taken for pathological examination, immunohistochemical staining, enzyme activity measurements and quantitative measurements of tissue peptide levels.
RESULTS We observed differential effects of the disease on peptide levels, which were somewhat different from previously reported changes in chronic gastritis in adults. Specifically, SP was increased and CGRP and VIP were decreased in patients with gastritis. The changes were more prominent at sites where gastritis was severe, but significant changes were also observed in neighboring areas where gastritis was less severe. Furthermore, the degree of changes was correlated with the pathological grade of the disease. The expression of CD10, the enzyme primarily involved in SP hydrolysis, was also decreased in patients with duodenitis.
CONCLUSION Based on these findings, we propose that decreased levels of VIP and CGRP and increased levels of SP contribute to pathological changes in gastric mucosa. Hence, new treatments targeting these molecules may have therapeutic and preventive effects.
Collapse
|