1
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Kurnia D, Lestari S, Mayanti T, Gartika M, Nurdin D. Anti-Infection of Oral Microorganisms from Herbal Medicine of Piper crocatum Ruiz & Pav. Drug Des Devel Ther 2024; 18:2531-2553. [PMID: 38952486 PMCID: PMC11215520 DOI: 10.2147/dddt.s453375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Seftiana Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Denny Nurdin
- Departement of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Zhang Q, Zhao Y, Yao Y, Wu N, Chen S, Xu L, Tu Y. Characteristics of hen egg white lysozyme, strategies to break through antibacterial limitation, and its application in food preservation: A review. Food Res Int 2024; 181:114114. [PMID: 38448098 DOI: 10.1016/j.foodres.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
5
|
Tomczyk Ł, Leśnierowski G, Cegielska-Radziejewska R. Lysozyme Modification Using Proteolytic Enzymes. Molecules 2023; 28:6260. [PMID: 37687089 PMCID: PMC10488540 DOI: 10.3390/molecules28176260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The lysozyme in the chicken egg white consists of various bioactive amino acids. However, these compounds are inactive when they are in the sequence of parent proteins. They become active only when isolated from these proteins. The aim of this study was to modify lysozyme with proteolytic enzymes under specific conditions of the reaction environment so as to obtain active biopeptides. The physicochemical properties of the resulting preparations were also assessed. Our study showed that the modification of lysozyme with hydrolytic enzymes (pepsin and trypsin) under strictly specified conditions resulted in obtaining biopeptide preparations with new and valuable properties, as compared with native lysozyme. After the enzymatic modification of lysozyme, two structural fractions were distinguished in the composition of the resulting preparations-the monomeric fraction and the peptide fraction. The modified lysozyme exhibited high surface hydrophobicity and high total antibacterial activity despite the decrease in the hydrolytic activity. Modification of lysozyme with hydrolytic enzymes, especially pepsin, resulted in preparations with very good antioxidative properties.
Collapse
Affiliation(s)
- Łukasz Tomczyk
- Department of Food Quality and Safety Management, Poznan University of Life Sciences, 60-624 Poznan, Poland; (G.L.); (R.C.-R.)
| | | | | |
Collapse
|
6
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
7
|
Leśnierowski G, Yang T, Cegielska-Radziejewska R. Unconventional effects of long-term storage of microwave-modified chicken egg white lysozyme preparations. Sci Rep 2021; 11:10707. [PMID: 34021198 PMCID: PMC8139952 DOI: 10.1038/s41598-021-89849-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
Thermal modification is an effective method that induces significant expansion of the antimicrobial properties and other valuable properties of chicken egg white lysozyme. In our latest research, a new innovative method of enzyme modification was developed, in which microwave radiation was used as an energy source to process liquid lysozyme concentrate (LLC). After modification, high-quality preparations were obtained. However, long-term storage in a concentrated form initiated various processes that caused darkening over time and could also lead to other significant changes to their structure and, consequently, to their functional properties. This necessitated multidirectional research to explain this phenomenon. This paper presents the results of research aimed at assessing the physicochemical changes in the properties of microwave-modified lysozyme in the form of a liquid concentrate after long-term storage under refrigeration conditions. The assessment also considered the conditions under the acidity of the modifying medium and the duration of the microwave modification. The analysis showed that the values of the basic parameters determining the quality and usefulness of the modified enzyme significantly improved during long-term storage of the preparations. The greatest changes were observed in the preparations modified for the longest time and in the most acidic environment (process time 260 s, pH 2.0), the number of oligomers under these conditions increased by 18% after 12 months of holding, and the surface hydrophobicity increased by as much as 31%. In addition, microbiological tests showed that the preparations of microwave-modified lysozyme had an effect on gram-positive bacteria as well as on gram-negative, and this effect was significantly enhanced after 12 months. The results confirm that LLC modification with microwave radiation is a highly efficient method to prepare high-quality and high utility potential lysozyme. Notably, an interesting and important phenomenon was the observation of the unconventional behaviour of the preparations during their long-term storage, which increased their utility potential significantly.
Collapse
Affiliation(s)
- Grzegorz Leśnierowski
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| | - Tianyu Yang
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| | - Renata Cegielska-Radziejewska
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| |
Collapse
|
8
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
9
|
Zhang YH, Bai J, Jiang WN, Zhao CR, Ji JJ, Wang JZ, Liu YW. Promising hen egg-derived proteins/peptides (EDPs) for food engineering, natural products and precision medicines. Res Vet Sci 2020; 128:153-161. [DOI: 10.1016/j.rvsc.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
|
10
|
Role of yoaE Gene Regulated by CpxR in the Survival of Salmonella enterica Serovar Enteritidis in Antibacterial Egg White. mSphere 2020; 5:5/1/e00638-19. [PMID: 31915212 PMCID: PMC6952189 DOI: 10.1128/msphere.00638-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is the predominant Salmonella serotype that causes human salmonellosis mainly through contaminated chicken eggs or egg products and has been a global public health threat. The spread and frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival in eggs, despite the antibacterial properties of egg white. Research on the survival mechanisms of S. Enteritidis in egg white will help develop effective strategies to control the contamination of eggs by this Salmonella serotype and help further elucidate the complex antibacterial mechanisms of egg white. This study revealed the importance of yoaE, a gene with unknown function, on the survival of S. Enteritidis in egg white, as well as its transcriptional regulation by CpxR. Our work provides the basis to reveal the mechanisms of survival of S. Enteritidis in egg white and the specific function of the yoaE gene. The survival ability of Salmonella enterica serovar Enteritidis in antibacterial egg white is an important factor leading to Salmonella outbreaks through eggs and egg products. In this study, the role of the gene yoaE, encoding an inner membrane protein, in the survival of Salmonella Enteritidis in egg white, and its transcriptional regulation by CpxR were investigated. Quantitative reverse transcription-PCR (RT-qPCR) results showed that the yoaE gene expression was upregulated 35-fold after exposure to egg white for 4 h compared to that in M9FeS medium, and the deletion of yoaE (ΔyoaE) dramatically decreased the survival rate of bacteria in egg white to less than 1% of the wild type (WT) and the complementary strain at both 37 and 20°C, indicating that yoaE was essential for bacteria to survive in egg white. Furthermore, the ΔyoaE strain was sensitive to a 3-kDa ultrafiltration matrix of egg white because of its high pH and antimicrobial peptide components. Putative conserved binding sites for the envelope stress response regulator CpxR were found in the yoaE promoter region. In vivo, the RT-qPCR assay results showed that the upregulation of yoaE in a ΔcpxR strain in egg white was 1/5 that of the WT. In vitro, results from DNase I footprinting and electrophoretic mobility shift assays further demonstrated that CpxR could directly bind to the yoaE promoter region, and a specific CpxR binding sequence was identified. In conclusion, it was shown for the first time that CpxR positively regulated the transcription of yoaE, which was indispensable for survival of Salmonella Enteritidis in egg white. IMPORTANCESalmonella enterica serovar Enteritidis is the predominant Salmonella serotype that causes human salmonellosis mainly through contaminated chicken eggs or egg products and has been a global public health threat. The spread and frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival in eggs, despite the antibacterial properties of egg white. Research on the survival mechanisms of S. Enteritidis in egg white will help develop effective strategies to control the contamination of eggs by this Salmonella serotype and help further elucidate the complex antibacterial mechanisms of egg white. This study revealed the importance of yoaE, a gene with unknown function, on the survival of S. Enteritidis in egg white, as well as its transcriptional regulation by CpxR. Our work provides the basis to reveal the mechanisms of survival of S. Enteritidis in egg white and the specific function of the yoaE gene.
Collapse
|
11
|
Antibacterial Activity of Hen Egg White Lysozyme Denatured by Thermal and Chemical Treatments. Sci Pharm 2018; 86:scipharm86040048. [PMID: 30380756 DOI: 10.3390/scipharm86040048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to increase the antibacterial spectrum of modified hen egg white lysozyme (HEWL) with thermal and chemical treatments against Gram-negative bacteria. The antibacterial activity of heat-denatured HEWL and chemical denatured HEWL against Gram-negative and Gram-positive bacteria was evaluated in 15 h of incubation tests. HEWL was denatured by heating at pH 6.0 and pH 7.0 and chemical denaturing was carried out for 1.0, 1.5, 2.0, and 4.0 h with DL-Dithiothreitol (DTT). HEWL modified by thermal and chemical treatments was characterized using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis method. Heat-denatured HEWL lytic activity against Micrococcus lysodeikticus lessened with increasing temperature and time of incubation with the chemical agent (DTT). The loss of lytic activity in modified HEWL suggests that the mechanism of action of the antibacterial activity is not dependent on the lytic activity. Thermal and chemical treatments of HEWL enabled the production of oligoforms and increased antibacterial activity over a wider spectrum. Heat-denatured HEWL at pH 6.0 and chemically-denatured HEWL increased the HEWL antibacterial spectrum against Gram-negative bacteria (Escherichia coli ATCC 25922). HEWL at 120 °C and pH 6.0 (1.0 mg/mL) inhibited 78.20% of the growth of E. coli. HEWL/DTT treatment for 4.0 h (1.0 mg/mL) inhibited 68.75% of the growth E. coli. Heat-denatured HEWL at pH 6.0 and pH 7.0 and chemically-denatured HEWL (1.0, 1.5, 2.0, and 4.0 h with DTT) were active against Gram-positive bacteria (Staphylococcus carnosus CECT 4491T). Heat-denatured and chemical-denatured HEWL caused the death of the bacteria with the destruction of the cell wall. LIVE/DEAD assays of fluorescent dye stain of the membrane cell showed membrane perturbation of bacteria after incubation with modified HEWL. The cell wall destruction was viewed using electron microscopy. The results obtained in this study suggest that heat-denatured HEWL at pH 6.0 and chemical-denatured HEWL treatments increase the HEWL antibacterial activity against Gram-negative bacteria.
Collapse
|