1
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
2
|
Feng JH, Jung JS, Hwang SH, Lee SK, Lee SY, Kwak YG, Kim DH, Song CY, Kim MJ, Suh HW, Kim SC, Lim SS. The mixture of Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge. extract produces analgesic and anti-inflammatory effects in a collagen-induced arthritis mouse model. Anim Cells Syst (Seoul) 2022; 26:166-173. [PMID: 36046031 PMCID: PMC9423830 DOI: 10.1080/19768354.2022.2106302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jing Hui Feng
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jeon Sub Jung
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | - Soo Kyeong Lee
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
- Institute of Korean Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Sang Youn Lee
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Youn Gil Kwak
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Doo-Ho Kim
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Chu-Youn Song
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Min Jung Kim
- Research Institute, Huons Foodience, Keumsan, Republic of Korea
| | - Hong Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
- Institute of Korean Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Feng JH, Kim HY, Sim SM, Zuo GL, Jung JS, Hwang SH, Kwak YG, Kim MJ, Jo JH, Kim SC, Lim SS, Suh HW. The Anti-Inflammatory and the Antinociceptive Effects of Mixed Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge Extract. PLANTS 2021; 10:plants10061234. [PMID: 34204404 PMCID: PMC8234973 DOI: 10.3390/plants10061234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Su-Min Sim
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Guang-Lei Zuo
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Jeon-Sub Jung
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Seung-Hwan Hwang
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Gyeonggi-do, Korea
| | - Youn-Gil Kwak
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Min-Jung Kim
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Jeong-Hun Jo
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Sung-Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| | - Hong-Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| |
Collapse
|
4
|
Cissus verticillata Extract Decreases Neuronal Damage Induced by Oxidative Stress in HT22 Cells and Ischemia in Gerbils by Reducing the Inflammation and Phosphorylation of MAPKs. PLANTS 2021; 10:plants10061217. [PMID: 34203930 PMCID: PMC8232592 DOI: 10.3390/plants10061217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
In the present study, we examined the effects of Cissus verticillata leaf extracts (CVE) against hydrogen peroxide (H2O2)- and ischemia-induced neuronal damage in HT22 cells and gerbil hippocampus. Incubation with CVE produced concentration-dependent toxicity in HT22 cells. Significant cellular toxicity was observed with >75 μg/mL CVE. CVE treatment at 50 μg/mL ameliorated H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell death in HT22 cells. In addition, incubation with CVE significantly mitigated the increase in Bax and decrease in Bcl-2 induced by H2O2 treatment in HT22 cells. In an in vivo study, the administration of CVE to gerbils significantly decreased ischemia-induced motor activity 1 d after ischemia, as well as neuronal death and microglial activation 4 d after ischemia, respectively. CVE treatment reduced the release of interleukin-1β, interleukin-6, and tumor necrosis factor-α 6 h after ischemia. Furthermore, CVE treatment significantly ameliorated ischemia-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38. These results suggest that CVE has the potential to reduce the neuronal damage induced by oxidative and ischemic stress by reducing the inflammatory responses and phosphorylation of MAPKs, suggesting that CVE could be a functional food to prevent neuronal damage induced by ischemia.
Collapse
|
5
|
Sim LY, Abd Rani NZ, Husain K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol 2019; 10:677. [PMID: 31275149 PMCID: PMC6594199 DOI: 10.3389/fphar.2019.00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
The prevalence of allergic diseases such as asthma, allergic rhinitis, food allergy and atopic dermatitis has increased dramatically in recent decades. Conventional therapies for allergy can induce undesirable effects and hence patients tend to seek alternative therapies like natural compounds. Considering the fact above, there is an urgency to discover potential medicinal plants as future candidates in the development of novel anti-allergic therapeutic agents. The Lamiaceae family, or mint family, is a diverse plant family which encompasses more than 7,000 species and with a cosmopolitan distribution. A number of species from this family has been widely employed as ethnomedicine against allergic inflammatory skin diseases and allergic asthma in traditional practices. Phytochemical analysis of the Lamiaceae family has reported the presence of flavonoids, flavones, flavanones, flavonoid glycosides, monoterpenes, diterpenes, triterpenoids, essential oil and fatty acids. Numerous investigations have highlighted the anti-allergic activities of Lamiaceae species with their active principles and crude extracts. Henceforth, this review has the ultimate aim of compiling the up-to-date (2018) findings of published scientific information about the anti-allergic activities of Lamiaceae species. In addition, the botanical features, medicinal uses, chemical constituents and toxicological studies of Lamiaceae species were also documented. The method employed for data collection in this review was mainly the exploration of the PubMed, Ovid and Scopus databases. Additional research studies were obtained from the reference lists of retrieved articles. This comprehensive summarization serves as a useful resource for a better understanding of Lamiaceae species. The anti-allergic mechanisms related to Lamiaceae species are also reviewed extensively which aids in future exploration of the anti-allergic potential of Lamiaceae species.
Collapse
Affiliation(s)
- Lee Yen Sim
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|