1
|
Xu J, He C, Tian R. Screening of Anti-Hair Loss Plant Raw Materials Based on Reverse Network Pharmacology and Experimental Validation. Curr Issues Mol Biol 2025; 47:68. [PMID: 39852183 PMCID: PMC11764182 DOI: 10.3390/cimb47010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
Hair loss is one of the skin conditions that can affect people's mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling pathway and the TGFβ/BMP signaling pathway, as well as key differential lipids, for plant raw materials selection. The aim is to identify plant raw materials that may have anti-hair loss properties and to validate these findings through cell experiments. Licorice, salvia miltiorrhiza, mulberry leaf, ephedra and curcumae radix were found that may possess anti-hair loss effects. Licorice water extract (LWE), salvia miltiorrhiza water extract (SMWE), mulberry leaf water extract (MLWE), ephedra water extract (EWE) and curcumae radix water extract (CRWE) did not exhibit cytotoxicity on human dermal papilla cells (HDPCs). Through ALP staining, it was found that the expression of ALP in HDPCs treated with LWE, SMWE, MLWE, EWE and CRWE was enhanced. In addition, LWE, SMWE, MLWE, EWE and CRWE have reduced the expression of hair growth inhibitory factor TGF-β1 and inflammatory factor IL-6. Additionally, various water extracts can enhance the secretion of VEGF, with high concentrations of SMWE, EWE and CRWE exhibiting better efficacy. Furthermore, β-catenin, a key factor of the Wnt/β-catenin signaling pathway, was enhanced by LWE, SMWE, MLWE, EWE and CRWE treatment in cultured HDPCs. In conclusion, all five plant raw materials showed some anti-hair loss potential, providing theoretical support for their application in anti-hair loss products.
Collapse
Affiliation(s)
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.X.); (R.T.)
| | | |
Collapse
|
2
|
Baiyasi M, St Claire K, Hengy M, Tur K, Fahs F, Potts G. Eyelash serums: A comprehensive review. J Cosmet Dermatol 2024; 23:2328-2344. [PMID: 38475901 DOI: 10.1111/jocd.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Eyelash serums, both prescription and over-the-counter, are gaining popularity for enhancing the appearance of eyelashes through various biologically active molecules. Categorized into prostaglandin analogs and non-prostaglandin analogs, these serums claim increased strength, length, luster, and thickness. Current United States law also requires no efficacy or safety assessments by the Food and Drug Administration before approving products for consumer use, potentially posing health risks for patients seeking over-the-counter eyelash enhancements. AIMS Our aims include exploring proposed benefits and adverse effects associated with eyelash serums, while providing evidence-based clinical recommendations on their use. We aim to contribute valuable insights to the understanding of eyelash serums and their respective safety considerations. METHODS The authors conducted a comprehensive electronic search across databases including PubMed, Embase, Cochrane Central, and Google Scholar to evaluate eyelash serum ingredients. Articles were evaluated by two independent researchers for relevance, and the ingredients discussed were analyzed and given clinical recommendations for eyelash serums based off the Oxford Centre for Evidence-Based Medicine. RESULTS Results highlight bimatoprost's efficacy, supported by numerous studies evaluating safety and adverse effects. Other prostaglandin ingredients show potential benefits, but further studies are encouraged to enhance the understanding of respective safety profiles. While non-prostaglandins ingredients show promising data, more studies are needed due to a lack of formal evidence in eyelash serum use. CONCLUSION As the cosmeceutical market for eyelash serums is growing, dermatologists need to be knowledgeable about evidence-based information regarding prescription and over-the-counter eyelash serum products before making recommendations to patients.
Collapse
Affiliation(s)
- Maya Baiyasi
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kayla St Claire
- Department of Dermatology, Wayne State University, Detroit, Michigan, USA
| | - Meredith Hengy
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Komal Tur
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fatima Fahs
- Department of Dermatology, Wayne State University, Detroit, Michigan, USA
| | - Geoffrey Potts
- Department of Dermatology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Nakane A, Hirose S, Kawai N, Fujimoto N, Kondo E, Asano K. Salmon nasal cartilage proteoglycan stimulates hair growth. Biosci Biotechnol Biochem 2023; 88:107-110. [PMID: 37881018 DOI: 10.1093/bbb/zbad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Hair loss is a commonly encountered problem. In this study, hair growth was enhanced by daily oral ingestion of salmon nasal cartilage proteoglycan (PG) in mice. Proteoglycan stimulated vesicular endothelial growth factor production in human follicle dermal papilla cells through insulin growth factor-1 receptor signaling, suggesting the possibility of hair loss improvement by PG ingestion.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Noriaki Kawai
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naoki Fujimoto
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Eriko Kondo
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Krisana Asano
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
4
|
Ho CY, Chen JYF, Hsu WL, Yu S, Chen WC, Chiu SH, Yang HR, Lin SY, Wu CY. Female Pattern Hair Loss: An Overview with Focus on the Genetics. Genes (Basel) 2023; 14:1326. [PMID: 37510231 PMCID: PMC10379895 DOI: 10.3390/genes14071326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pattern hair loss can occur in both men and women, and the underlying molecular mechanisms have been continuously studied in recent years. Male androgenetic alopecia (M-AGA), also termed male pattern hair loss, is the most common type of hair loss in men. M-AGA is considered an androgen-dependent trait with a background of genetic predisposition. The interplay between genetic and non-genetic factors leads to the phenotype of follicular miniaturization. Although this similar pattern of phenotypic miniaturization can also be found in female pattern hair loss (FPHL), the corresponding genetic factors in M-AGA do not account for the phenotype in FPHL, indicating that there are different genes contributing to FPHL. Therefore, the role of genetic factors in FPHL is still uncertain. Understanding the genetic mechanism that causes FPHL is crucial for the future development of personalized treatment strategies. This review aims to highlight the differences in the ethnic prevalence and genetic background of FPHL, as well as the current genetic research progress in nutrition, Wnt signaling, and sex hormones related to FPHL.
Collapse
Affiliation(s)
- Chih-Yi Ho
- School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Wei-Chiao Chen
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Szu-Hao Chiu
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Hui-Ru Yang
- Department of Laboratory Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Sheng-Yao Lin
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
6
|
Zhang B, Zhang W, Luo J, He J, Zheng X, Zhu S, Rong B, Ai Y, Zhang L, He T. Effects of oleanolic acid on hair growth in mouse dorsal skin mediated via regulation of inflammatory cytokines. J Appl Biomed 2023; 21:48-57. [PMID: 37016778 DOI: 10.32725/jab.2023.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid with favourable physiological activity. It is widely distributed in more than 200 species of plants. OA has garnered significant interest because of its potential biological activities, such as antioxidant, bacteriostatic, and hair growth-promoting effects. To study the effect of OA on hair growth and related mechanisms, we investigated hair growth in mice with testosterone-induced androgenetic alopecia (AGA) that were treated with three different concentrations of OA. The antioxidant, bacteriostatic, and cytotoxic effects of OA were evaluated. We found that mice with testosterone-induced AGA treated with 1% or 0.5% OA showed significantly enhanced hair growth and increased vascular endothelial growth factor/glyceraldehyde-3-phosphate dehydrogenase ratio and levels of fibroblast growth factor receptor and insulin-like growth factor 1. Using an immunofluorescence staining assay, we demonstrated that β-catenin, a key Wnt signalling transducer, was highly expressed in the OA-treated groups. These results suggest that OA may promote hair growth by stimulating hair matrix cell proliferation via the Wnt/β-catenin pathway and lowering the levels of tumour necrosis factor-alpha, and transforming growth factor-beta 1, dihydrotestosterone, and 5α-reductase.
Collapse
|
7
|
Jung J, Kwon KH. Rethinking of positive effects of eggs on hair in East Asia. J Cosmet Dermatol 2023; 22:737-743. [PMID: 36237143 DOI: 10.1111/jocd.15469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Our bodies are a collection of nutrients. For healthy body production and activities, good nutrients must be balanced and supplied steadily. However, as modern people eat more irregular meals and fast food, they are running out of nutrients needed by the human body. As a result, research was conducted on the effect of eggs with good cost-effectiveness on the human body and hair. PURPOSE The purpose of this paper is to review the literature investigated to convey knowledge of the positive nutrients of modern people's nutrition and eggs. METHODS These data were reviewed to identify agreement between each section and the unique guiding area. Regarding the survey criteria, it was finally decided that 31 papers were suitable for evaluating the purpose of research as follows. PRISMA flowcharts allow you to determine the number of records identified, included, and excluded. RESULTS Eggs are considered the most cost-effective foods that deliver protein, biotin, choline, and vitamin A to the world, and eggs that can be easily consumed are known as nutritional foods because they contain protein, lipids, minerals, and embryonic development growth factors. It is widely consumed as a food that can be eaten by anyone, including the elderly and children. CONCLUSIONS In this study, eggs can be used as important data for modern people by delivering nutrients to the human body and hair of modern people and understanding positive nutrients.
Collapse
Affiliation(s)
- Jina Jung
- Division of Beauty Arts Care, Department of Practical Arts, Graduate School of Culture and Arts, Dongguk University, Seoul, Korea.,Eunoa Hair Shop, Incheon, Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul, Korea
| |
Collapse
|
8
|
Zhang YH, Bai J, Jiang WN, Zhao CR, Ji JJ, Wang JZ, Liu YW. Promising hen egg-derived proteins/peptides (EDPs) for food engineering, natural products and precision medicines. Res Vet Sci 2020; 128:153-161. [DOI: 10.1016/j.rvsc.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
|