1
|
Ngoc LTN, Moon JY, Lee YC. Dendropanax morbifera Extracts for Cosmetic Applications: Systematic Review and Meta-Analysis. Curr Issues Mol Biol 2024; 46:13526-13541. [PMID: 39727936 DOI: 10.3390/cimb46120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
We have conducted a systematic review and meta-analysis to evaluate the cosmetic applications of Dendropanax morbifera extracts (DMEs). A total of 261 articles were screened; however, after eliminating inappropriate studies, only 16 individual studies were eligible. The comparative standardized mean difference (SMD) between the DME treatment and control groups was used to evaluate the cosmetic properties of DME, including its biocompatibility, whitening effects, and anti-inflammatory and antimicrobial properties. DME treatment exhibited positive results in controlling hyperpigmentation, including effective inhibition of the production of tyrosinase and melanin, with SMDs of 6.85 [4.27, 9.44] and 23.38 [12.94, 33.82], respectively. Moreover, the results confirmed the anti-inflammatory properties in terms of suppressing the expression of interleukin markers (ILs) (SMD = 5.22 [3.12, 7.33]) and reducing NO production (SMD = 6.92 [2.89, 10.96]). DME treatment also effectively inhibited bacteria growth, which causes skin disorders. According to the results, DMEs are shown to be highly biocompatibility, with excellent anti-hyperpigmentation, anti-inflammatory, and antimicrobial properties that contribute significantly to improving skin appearance. The findings provide strong evidence for further research into the in vivo effects of DMEs and their potential cosmetic applications, which could lead to clinical trials in the future.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Ju-Young Moon
- Major in Beauty Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Xu F, Xu S, Yang L, Qu A, Li D, Yu M, Wu Y, Zheng S, Ruan X, Wang Q. Preparing a Phytosome for Promoting Delivery Efficiency and Biological Activities of Methyl Jasmonate-Treated Dendropanax morbifera Adventitious Root Extract (DMARE). Biomolecules 2024; 14:1273. [PMID: 39456206 PMCID: PMC11505992 DOI: 10.3390/biom14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Methyl jasmonate-treated D. morbifera adventitious root extract (MeJA-DMARE), enriched with phenolics, has enhanced bioactivities. However, phenolics possess low stability and bioavailability. Substantial evidence indicates that plant extract-phospholipid complex assemblies, known as phytosomes, represent an innovative drug delivery system. (2) Methods: The phytosome complex was created by combining MeJA-DMARE with Soy-L-α-phosphatidylcholine (PC) using three different ratios through two distinct methods (co-solvency method: A1, A2, and A3; thin-layer film method: B1, B2, and B3). (3) Results: Initial evaluation based on UV-Vis, entrapment efficiency (EE%), and loading content (LC%) indicated that B2 exhibited the highest EE% (79.98 ± 1.45) and LC% (69.17 ± 0.14). The phytosome displayed a spherical morphology with a particle size of 210 nm, a notably low polydispersity index of 0.16, and a superior zeta potential value at -25.19 mV. The synthesized phytosome exhibited superior anti-inflammatory activities by inhibiting NO and ROS production (reduced to 8.9% and 55.1% at 250 μg/mL) in RAW cells and adjusting the expression of related inflammatory cytokines; they also slowed lung tumor cell migration (only 2.3% of A549 cells migrated after treatment with phytosomes at 250 μg/mL), promoting ROS generation in A549 cell lines (123.7% compared to control) and stimulating apoptosis of lung cancer-related genes. (4) Conclusions: In conclusion, the MeJA-DMARE phytosome offers stable, economically efficient, and environmentally friendly nanoparticles with superior inflammation and lung tumor inhibition properties. Thus, the MeJA-DMARE phytosome holds promise as an applicable and favorable creation for drug delivery and lung cancer treatment.
Collapse
Affiliation(s)
- Fengjiao Xu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Shican Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, College of Agriculture, Henan University, Kaifeng 475004, China;
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Aili Qu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Dongbin Li
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Minfen Yu
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Yongping Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| |
Collapse
|
3
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
4
|
Awais M, Akter R, Boopathi V, Ahn JC, Lee JH, Mathiyalagan R, Kwak GY, Rauf M, Yang DC, Lee GS, Kim YJ, Jung SK. Discrimination of Dendropanax morbifera via HPLC fingerprinting and SNP analysis and its impact on obesity by modulating adipogenesis- and thermogenesis-related genes. Front Nutr 2023; 10:1168095. [PMID: 37621738 PMCID: PMC10446900 DOI: 10.3389/fnut.2023.1168095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023] Open
Abstract
Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol's discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes.
Collapse
Affiliation(s)
- Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Gi-Young Kwak
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Mamoona Rauf
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Geun Sik Lee
- Southwest Coast Hwangchil Cooperative, Chonnam National University, Gwangju si, Republic of Korea
- Jungwon University Industry Academic Cooperation Building, Goesan-gun, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
5
|
Lee KD, Shim SY. Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods 2022; 11:foods11131910. [PMID: 35804727 PMCID: PMC9265937 DOI: 10.3390/foods11131910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma is a highly prevalent inflammatory disease of the respiratory airways and an increasing health risk worldwide. Hence, finding new strategies to control or attenuate this condition is necessary. This study suggests nutraceuticals that are a combination of herbal plant extracts prepared from Acanthopanax sessiliflorum (AS), Codonopsis lanceolate (CL), Dendropanax morbiferus (DM), Allium hookeri (AH), and Raphanus sativus L. (RS) that can improve immunomodulatory ability through the detoxification and diuresis of air pollutants. Herbal parts (AH whole plant, RS and CL roots, AS and DM stems, and DM leaves) were selected, and four types of mixtures using plant extracts were prepared. Among these mixtures, M2 and M4 exhibited antioxidant activities in potent 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 1,1-diphenyl-β-picrylhydrazine (DPPH) radical assays. Moreover, M4 exhibited a marked increase in glutathione S-transferase (GST) activity and significantly inhibited the inflammatory mediator, nitric oxide (NO) and proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α generation. Furthermore, M4 exhibited the strongest antioxidant, hepatoprotective, and anti-inflammatory effects and was selected to prepare the product. Before manufacturing the product, we determined that the active mixture, M4, inhibited gene expression and generation of proinflammatory cytokines IL-1β, IL-6 and TNF-α in ovalbumin (OVA)-, lipopolysaccharide (LPS)-, and particulate matter (PM)-induced asthmatic rat models. The granular product (GP) was manufactured using M4 along with additives, i.e., lactose, oligosaccharide, stevioside extract, and nutmeg seed essential oils (flavor masking), in a ratio of 1:4 using a granulation machine, dried and ultimately packaged. The GP inhibited the generation of proinflammatory cytokines IL-1β, IL-6 and TNF-α in OVA-, LPS- and PM-induced asthmatic rat models. These results suggest that GP prepared from a combination of herbal plants (AS, CL, DM, AH and RS) is a potent functional food with anti-inflammatory activity that can be used to treat asthma caused by ambient air pollutants.
Collapse
Affiliation(s)
- Kyung-Dong Lee
- Department of Companion Animal Industry, College of Health & Welfare, Dongshin University, Naju 58245, Korea;
| | - Sun-Yup Shim
- Department of Food Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Korea
- Correspondence: ; Tel./Fax: +82-61-750-3250
| |
Collapse
|
6
|
Lee A, Koh E, Kim D, Lee N, Cho SM, Lee YJ, Cho IH, Yang HJ. Dendropanax trifidus Sap-Mediated Suppression of Obese Mouse Body Weight and the Metabolic Changes Related with Estrogen Receptor Alpha and AMPK-ACC Pathways in Muscle Cells. Nutrients 2022; 14:nu14051098. [PMID: 35268079 PMCID: PMC8912501 DOI: 10.3390/nu14051098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Dendropanax trifidus (DT) is a medicinal herb native to East Asia, which has been used extensively for its therapeutic properties in traditional medicine. In this study, we examined the effects of DT sap on the regulation of body weight and muscle metabolism in mice. Obese model db/db mice were administered daily with DT sap or vehicle control over a 6-week period. The effects of DT sap on muscle metabolism were studied in C2C12 muscle cells, where glycolytic and mitochondrial respiration rates were monitored. As AMP-activated protein kinase (AMPK) is a master regulator of metabolism and plays an important function as an energy sensor in muscle tissue, signaling pathways related with AMPK were also examined. We found that DT sap inhibited body weight increase in db/db, db/+, and +/+ mice over a 6-week period, while DT sap-treated muscle cells showed increased muscle metabolism and also increased phosphorylation of AMPK and Acetyl-CoA Carboxylase (ACC). Finally, we found that DT sap, which is enriched in estrogen in our previous study, significantly activates estrogen alpha receptor in a concentration-dependent manner, which can drive the activation of AMPK signaling and may be related to the muscle metabolism and weight changes observed here.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Namkyu Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | | | - Young Joo Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea
- Correspondence:
| |
Collapse
|
7
|
Jun JE, Hwang YC, Ahn KJ, Chung HY, Choung SY, Jeong IK. The efficacy and safety of Dendropanax morbifera leaf extract on the metabolic syndrome: a 12-week, placebo controlled, double blind, and randomized controlled trial. Nutr Res Pract 2022; 16:60-73. [PMID: 35116128 PMCID: PMC8784258 DOI: 10.4162/nrp.2022.16.1.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES SUBJECTS/METHODS RESULTS CONCLUSIONS Trial Registration
Collapse
Affiliation(s)
- Ji Eun Jun
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea
| | - You-Cheol Hwang
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea
| | - Ho Yeon Chung
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea
| | - Se Young Choung
- Department of Preventive Pharmacy and Toxicology, Department of Life and Nanopharmaceutical Sciences of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - In-Kyung Jeong
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea
| |
Collapse
|
8
|
Antioxidant Effect of Wheat Germ Extracts and Their Antilipidemic Effect in Palmitic Acid-Induced Steatosis in HepG2 and 3T3-L1 Cells. Foods 2021; 10:foods10051061. [PMID: 34065831 PMCID: PMC8151358 DOI: 10.3390/foods10051061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Wheat germ (WG) is a by-product of wheat milling and comprises many bioactive compounds. This study aimed to compare the antioxidant and antilipidemic effects of different WG extracts (WGEs) by analyzing candidate bioactive compounds such as carotenoids, tocopherols, γ-oryzanol, and biogenic amines by reversed-phase high-performance liquid chromatography. Antioxidant activity was determined using the ABTS, DPPH, and FRAP assays. The antilipidemic effect was evaluated in palmitic acid-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. Cellular lipid accumulation was assessed by Oil Red O staining and a cellular triglyceride content assay. All analyzed WGEs showed significant antioxidant potential, although some bioactive compounds, such as carotenoids, tocopherols, and γ-oryzanol, were the highest in the ethanol extract. Correlation analysis revealed the antioxidant potential of all identified biogenic amines except for spermidine. Ethanol and n-hexane extracts significantly inhibited cellular lipid accumulation in cell models. These results suggest that WGEs exhibit promising antioxidant potential, with a variety of bioactive compounds. Collectively, the findings of this study suggest that bioactive compounds in WGEs attenuate plasma lipid and oxidation levels. In conclusion, WG can be used as a natural antioxidant and nutraceutical using appropriate solvents and extraction methods.
Collapse
|
9
|
Song JH, Kim H, Jeong M, Kong MJ, Choi HK, Jun W, Kim Y, Choi KC. In Vivo Evaluation of Dendropanax morbifera Leaf Extract for Anti-Obesity and Cholesterol-Lowering Activity in Mice. Nutrients 2021; 13:1424. [PMID: 33922621 PMCID: PMC8146056 DOI: 10.3390/nu13051424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome is a worldwide health problem, and obesity is closely related to type 2 diabetes, cardiovascular disease, hypertension, and cancer. According to WHO in 2018, the prevalence of obesity in 2016 tripled compared to 1975. D. morbifera reduces bad cholesterol and triglycerides levels in the blood and provides various antioxidant nutrients and germicidal sub-stances, as well as selenium, which helps to remove active oxygen. Moreover, D. morbifera is useful for treating cardiovascular diseases, hypertension, hyperlipidemia, and diabetes. Therefore, we study in vivo efficacy of D. morbifera to investigate the prevention effect of obesity and cholesterol. The weight and body fat were effectively reduced by D. morbifera water (DLW) extract administration to high-fat diet-fed C57BL/6 mice compared to those of control mice. The group treated with DLW 500 mg∙kg-1∙d-1 had significantly lower body weights compared to the control group. In addition, High-density lipoprotein (HDL) cholesterol increased in the group treated with DLW 500 mg∙kg-1∙d-1. The effect of DLW on the serum lipid profile could be helpful to prevent obesity. DLW suppresses lipid formation in adipocytes and decreases body fat. In conclusion, DLW can be applied to develop anti-obesity functional foods and other products to reduce body fat.
Collapse
Affiliation(s)
- Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.S.); (H.K.); (M.J.); (M.J.K.)
| | - Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.S.); (H.K.); (M.J.); (M.J.K.)
| | - Minseok Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.S.); (H.K.); (M.J.); (M.J.K.)
| | - Min Jung Kong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.S.); (H.K.); (M.J.); (M.J.K.)
| | | | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea;
| | - Yongjae Kim
- SDC Research Institute, Jeollanam-do 57309, Korea;
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.S.); (H.K.); (M.J.); (M.J.K.)
| |
Collapse
|
10
|
Plant Extracts for Type 2 Diabetes: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10010081. [PMID: 33435282 PMCID: PMC7827314 DOI: 10.3390/antiox10010081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the largest public health problems worldwide. Insulin resistance-related metabolic dysfunction and chronic hyperglycemia result in devastating complications and poor prognosis. Even though there are many conventional drugs such as metformin (MET), Thiazolidinediones (TZDs), sulfonylureas (SUF), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon like peptide 1 (GLP-1) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors, side effects still exist. As numerous plant extracts with antidiabetic effects have been widely reported, they have the potential to be a great therapeutic agent for type 2 diabetes with less side effects. In this study, sixty-five recent studies regarding plant extracts that alleviate type 2 diabetes were reviewed. Plant extracts regulated blood glucose through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The anti-inflammatory and antioxidant properties of plant extracts suppressed c-Jun amino terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, which induce insulin resistance. Lipogenesis and fatty acid oxidation, which are also associated with insulin resistance, are regulated by AMP-activated protein kinase (AMPK) activation. This review focuses on discovering plant extracts that alleviate type 2 diabetes and exploring its therapeutic mechanisms.
Collapse
|
11
|
Balakrishnan R, Cho DY, Su-Kim I, Choi DK. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants (Basel) 2020; 9:antiox9100962. [PMID: 33049991 PMCID: PMC7601828 DOI: 10.3390/antiox9100962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.
Collapse
|
12
|
Park JU, Yang SY, Guo RH, Li HX, Kim YH, Kim YR. Anti-Melanogenic Effect of Dendropanax morbiferus and Its Active Components via Protein Kinase A/Cyclic Adenosine Monophosphate-Responsive Binding Protein- and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation. Front Pharmacol 2020; 11:507. [PMID: 32390848 PMCID: PMC7191003 DOI: 10.3389/fphar.2020.00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Dendropanax morbiferus H. Lév has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia-associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(-)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Hong Xu Li
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
13
|
Li HX, Kang S, Yang SY, Kim YH, Li W. Chemical constituents from Dendropanax morbiferus H. Lév. Stems and leaves and their chemotaxonomic significance. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|