1
|
Biotin Enhances Testosterone Production in Mice and Their Testis-Derived Cells. Nutrients 2022; 14:nu14224761. [PMID: 36432448 PMCID: PMC9697070 DOI: 10.3390/nu14224761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Late-onset hypogonadism, a male age-related syndrome characterized by a decline in testosterone production in the testes, is commonly treated with testosterone replacement therapy, which has adverse side effects. Therefore, an alternative treatment is highly sought. Supplementation of a high dosage of biotin, a water-soluble vitamin that functions as a coenzyme for carboxylases involved in carbohydrate, lipid, and amino acid metabolism, has been shown to influence testis functions. However, the involvement of biotin in testis steroidogenesis has not been well clarified. In this study, we examined the effect of biotin on testosterone levels in mice and testis-derived cells. In mice, intraperitoneal treatment with biotin (1.5 mg/kg body weight) enhanced testosterone levels in the serum and testes, without elevating serum levels of pituitary luteinizing hormone. To investigate the mechanism in which biotin increased the testosterone level, mice testis-derived I-10 cells were used. The cells treated with biotin increased testosterone production in a dose- and time-dependent manner. Biotin treatment elevated intracellular cyclic adenosine monophosphate levels via adenylate cyclase activation, followed by the activation of protein kinase A and testosterone production. These results suggest that biotin may have the potential to improve age-related male syndromes associated with declining testosterone production.
Collapse
|
2
|
Fan Y, Xu Q, Qian H, Tao C, Wan T, Li Z, Yan W, Niu R, Huang Y, Chen M, Xu Q, Martin EM, Wang X, Qin Y, Lu C. High-fat diet aggravates prenatal low-dose DEHP exposure induced spermatogenesis disorder: Characterization of testicular metabolic patterns in mouse offspring. CHEMOSPHERE 2022; 298:134296. [PMID: 35301995 PMCID: PMC9533191 DOI: 10.1016/j.chemosphere.2022.134296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/02/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer and has been identified as a male prenatal reproductive toxicant. A high fat diet (HFD) has also been suggested as another potential disruptor of male reproductive function. Despite this potential synergism between DEHP exposure and HFD, little is known about the concomitant effects of prenatal DEHP and a subsequent HFD exposure on male offspring reproductive injury. Here we established a mouse model of prenatal exposure to DEHP (0.2 mg/kg/day) to assess the testicular development and spermatogenesis in offspring subjected to obesogenic diet during the pubertal period. Gross phenotype, hormone profiles and the testicular metabolome were analyzed to determine the underlying mechanism. We found that prenatal exposure to low-dose DEHP resulted in decreased sperm density, decreased testosterone (T) levels, increased luteinizing hormone (LH) levels and testicular germ cell apoptosis. Furthermore, these injury phenotypes were aggravated by pubertal HFD treatment. Testicular riboflavin and biotin metabolites were enriched implying their roles in contributing HFD to exacerbate offspring spermatogenesis disorders due to prenatal low-dose DEHP exposure. Our findings suggest that pubertal HFD exacerbates reproductive dysfunction associated with prenatal exposure to low-dose DEHP in male adult offspring.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tingya Wan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Niu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiujin Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 111 TW Alexander Drive, NC, 27707, USA
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Salazar-Anzures T, Pastén-Hidalgo K, Sicilia-Argumedo G, Riverón-Negrete L, Hernández-Vázquez ADJ, Fernanadez-Mejia C. Dietary biotin supplementation increases proliferation pathways in mice testes without affecting serum follicle-stimulating hormone levels and stem cell factor expression. Toxicol Appl Pharmacol 2021; 433:115774. [PMID: 34699867 DOI: 10.1016/j.taap.2021.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Supplements containing pharmacological concentrations of biotin are commercially available. The mechanisms by which biotin at pharmacological concentrations exerts its action have been the subject of multiple investigations, particularly for biotin's medicinal potential and wide use for cosmetic purposes. Several studies have reported that biotin supplementation increases cell proliferation; however, the mechanisms involved in this effect have not yet been characterized. In a previous study, we found that a biotin-supplemented diet increased spermatogonia proliferation. The present study was focused on investigating the molecular mechanisms involved in biotin-induced testis cell proliferation. Male BALB/cAnNHsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for eight weeks. Compared with the control group, the biotin-supplemented mice presented augmented protein abundance of the c-kit-receptor and pERK1/2Tyr204 and pAKTSer473, the active forms of ERK/AKT proliferation signaling pathways. No changes were observed in the testis expression of the stem cell factor and in the serum levels of the follicle-stimulating hormone. Analysis of mRNA abundance found an increase in cyclins Ccnd3, Ccne1, Ccna2; Kinases Cdk4, Cdk2; and E2F; and Sp1 & Sp3 transcription factors. Decreased expression of cyclin-dependent kinase inhibitor 1a (p21) was observed but not of Cdkn2a inhibitor (p16). The results of the present study identifies, for the first time, the mechanisms associated with biotin supplementation-induced cell proliferation, which raises concerns about the effects of biotin on male reproductive health because of its capacity to cause hyperplasia, especially because this vitamin is available in large amounts without regulation.
Collapse
Affiliation(s)
- Tonatiuh Salazar-Anzures
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Karina Pastén-Hidalgo
- Cátedra CONACYT, Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Gloria Sicilia-Argumedo
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Leticia Riverón-Negrete
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Alain de Jesús Hernández-Vázquez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Cristina Fernanadez-Mejia
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico.
| |
Collapse
|
4
|
Aguilera-Méndez A, Boone-Villa D, Nieto-Aguilar R, Villafaña-Rauda S, Molina AS, Sobrevilla JV. Role of vitamins in the metabolic syndrome and cardiovascular disease. Pflugers Arch 2021; 474:117-140. [PMID: 34518916 DOI: 10.1007/s00424-021-02619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
The prevalence of metabolic syndrome and cardiovascular disease has increased and continues to be the leading cause of mortality worldwide. The etiology of these diseases includes a complex phenotype derived from interactions between genetic, environmental, and nutritional factors. In this regard, it is common to observe vitamin deficiencies in the general population and even more in patients with cardiometabolic diseases due to different factors. Vitamins are essential micronutrients for cellular metabolism and their deficiencies result in diseases. In addition to its role in nutritional functions, increasingly, vitamins are being recognized as modulators of genetics expression and signals transduction, when consumed at pharmacological concentrations. Numerous randomized preclinical and clinical trials have evaluated the use of vitamin supplementation in the prevention and treatment of metabolic syndrome and cardiovascular disease. However, it is controversy regarding its efficacy in the treatment and prevention of these diseases. In this review, we investigated chemical basics, physiological effect and recommended daily intake, problems with deficiency and overdose, preclinical and clinical studies, and mechanisms of action of vitamin supplementation in the treatment and prevention of metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Asdrubal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México.
| | - Daniel Boone-Villa
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| | - Renato Nieto-Aguilar
- University Center for Postgraduate Studies and Research, School of Dentistry, Universidad Michoacana de San Nicolás de Hidalgo, 58337, Morelia, Michoacán, México
| | - Santiago Villafaña-Rauda
- Postgraduate Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Alfredo Saavedra Molina
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Mújica, Edificio B3, Ciudad Universitaria, CP, 58030, Morelia, Michoacán, México
| | - Janeth Ventura Sobrevilla
- School of Medicine, North Section, Universidad Autónoma de Coahuila, Piedras Negras, 26090, Coahuila, México
| |
Collapse
|