1
|
Quintal Martínez JP, Quintal Ortiz IG, Alonso Salomón LG, García-Sosa K, Peña Rodríguez LM, Guerrero Analco JA, Monribot Villanueva JL, Vidal Limón AM, Segura Campos MR. Bioassay-guided identification of antithrombotic compounds from Cnidoscolus aconitifolius (Mill.) I. M. Jhonst.: molecular docking, bioavailability, and toxicity prediction. J Biomol Struct Dyn 2024; 42:1692-1710. [PMID: 37232450 DOI: 10.1080/07391102.2023.2214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Conventional antithrombotic therapy has reported hemorrhagic accidents. Ethnobotanical and scientific reports point to Cnidoscolus aconitifolius as an antithrombotic adjuvant. Previously, C. aconitifolius leaves ethanolic extract displayed antiplatelet, anticoagulant, and fibrinolytic activities. This work aimed to identify compounds from C. aconitifolius with in vitro antithrombotic activity through a bioassay-guided study. Antiplatelet, anticoagulant, and fibrinolytic tests guided the fractionation. Ethanolic extract was subjected to a liquid-liquid partitioning, followed by vacuum liquid, and size exclusion chromatography to obtain the bioactive JP10B fraction. The compounds were identified through UHPLC-QTOF-MS, and their molecular docking, bioavailability, and toxicological parameters were determined computationally. Kaempferol-3-O-glucorhamnoside and 15(S)-HPETE were identified; both showed affinity for antithrombotic targets, low absorption, and safety for human consumption. Further in vitro and in vivo evaluations will better understand their antithrombotic mechanism. This bioassay-guided fractionation demonstrated that C. aconitifolius ethanolic extract has antithrombotic compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Karlina García-Sosa
- Organic Chemistry Group, Biotechnology Unit, Yucatan Scientific Research Center, Merida, Yucatan, Mexico
| | - Luis Manuel Peña Rodríguez
- Organic Chemistry Group, Biotechnology Unit, Yucatan Scientific Research Center, Merida, Yucatan, Mexico
| | - José Antonio Guerrero Analco
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | - Juan Luis Monribot Villanueva
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | - Abraham Marcelino Vidal Limón
- Chemistry of Natural Products Laboratory, Network of Advanced Molecular Studies, Institute of Ecology AC, BioMimic® Scientific and Technological Cluster, Xalapa, Veracruz, Mexico
| | | |
Collapse
|
2
|
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity-A Review. Molecules 2023; 28:molecules28041677. [PMID: 36838662 PMCID: PMC9965408 DOI: 10.3390/molecules28041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Functionality of the fibrinolytic system is based on activity of its central enzyme, plasmin, responsible for the removal of fibrin clots. Besides the hemostasis, fibrinolytic proteins are also involved in many other physiological and pathological processes, including immune response, extracellular matrix degradation, cell migration, and tissue remodeling. Both the impaired and enhanced activity of fibrinolytic proteins may result in serious physiological consequences: prothrombotic state or excessive bleeding, respectively. However, current medicine offers very few options for treating fibrinolytic disorders, particularly in the case of plasmin inhibition. Although numerous attempts have been undertaken to identify natural or to develop engineered fibrinolytic system modulators, structural similarities within serine proteases of the hemostatic system and pleiotropic activity of fibrinolytic proteins constitute a serious problem in discovering anti- or profibrinolytic agents that could precisely affect the target molecules and reduce the risk of side effects. Therefore, this review aims to present a current knowledge of various classes of natural inhibitors and stimulators of the fibrinolytic system being well-defined low-molecular plant secondary metabolites or constituents of plant extracts as well as plant peptides. This work also discusses obstacles caused by low specificity of most of natural compounds and, hence, outlines recent trends in studies aimed at finding more efficient modulators of plasmin activity, including investigation of modifications of natural pharmacophore templates.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| | - Jan Czepas
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Quintal Martínez JP, Segura Campos MR. Bioactive compounds and functional foods as coadjuvant therapy for thrombosis. Food Funct 2023; 14:653-674. [PMID: 36601778 DOI: 10.1039/d2fo03171j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death. The most common cardiovascular pathologies are thromboembolic diseases. Antithrombotic therapy prevents thrombus formation or dissolves that previously constituted. However, it presents a high rate of accidents such as gastric bleeding and cerebrovascular embolism. Plant foods and their secondary metabolites have been reported to regulate blood hemostasis. This review article aims to propose plant foods and their metabolites as adjuvant therapy for the management of thromboembolic diseases. Various databases were consulted, using antiplatelet, anticoagulant, and fibrinolytic as key terms. In total, 35 foods and 24 secondary metabolites, via in vitro, in vivo, and clinical studies, have been reported to regulate platelet aggregation, blood coagulation, and fibrinolysis. According to the studies presented in this review, plant foods with effects at concentrations less than 50 μg mL-1 and secondary metabolites with IC50 less than 100 μM can be considered agents with high antithrombotic potential. This review suggests that plant foods and their secondary metabolites should be used to develop foods, ingredients and nutraceuticals with functional properties. The evidence presented in this review shows that plant foods and their bioactive compounds could be used as adjuvants for the treatment and prevention of thrombotic complications. However, further in vivo and clinical trials are required to establish effective and safe doses.
Collapse
|