1
|
Wang J, Jian A, Sun D, Cui M, Piao C, Wang J, Mu B, Li T, Li G, Li H. Acer tegmeutosum Maxim extract alleviates acute alcohol-induced liver disease and regulates gut microbiota dysbiosis in mice. Arch Biochem Biophys 2025; 765:110314. [PMID: 39832610 DOI: 10.1016/j.abb.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Acer tegmentosum Maxim (AT) has a variety of pharmacological activities, however, the effects of AT on liver injury and gut microbiota in alcoholic liver disease (ALD) mice is still unclear. This study aimed to evaluate the preventive effect of AT extract on acute alcoholic liver disease. Six-week-old male C57BL/6J mice were randomly divided into 6 groups. Each group was intragastrically treated saline or different concentration of AT extract solution for 5 weeks continuously. After the last gavage, except for the NC group, all the other groups were gavaged twice with 56 % alcohol to establish the acute ALD model and biochemical indexes, histopathological, and gut microbiota were analyzed. Established an acute ALD mouse model and detected serum, liver oxidation levels, and alcohol metabolism-related gene expressions. Through 16S rRNA sequencing, analyzed gut microbiota, explored the relationship between gut microbiota and liver indicators. AT extract significantly decreased lipid levels, promoted ADH, ALDH, and increased the antioxidant activities. Meanwhile, AT extract significantly downregulated the expression of lipid oxidation and inflammatory factors, upregulated alcohol metabolism genes. In addition, 16S rRNA sequencing and analysis showed that AT extract effectively regulated the gut microbiota diversity of ALD mice, significantly improved the structural disturbance of intestinal microflora. AT extract regulated gut microbiota and had a strong correlation with serum, liver-related indexes, and gene expression levels. All these results showed that AT can alleviate alcohol induced liver injury by regulating oxidative stress, inflammatory response, alcohol metabolism, and gut microbiota disorder.
Collapse
Affiliation(s)
- Jianan Wang
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Aqing Jian
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Depeng Sun
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Mingxun Cui
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Chunxiang Piao
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Juan Wang
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Baide Mu
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Tingyu Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China
| | - Guanhao Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hongmei Li
- College of Agricultural, Yanbian University, Yanji, Jilin, 133002, China; Food Research Center, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
2
|
Li J, Guo C, Yang X, Xie W, Mi W, Hua C, Tang C, Wang H. Effects of natural products on macrophage immunometabolism: A new frontier in the treatment of metabolic diseases. Pharmacol Res 2025; 213:107634. [PMID: 39889866 DOI: 10.1016/j.phrs.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Immunometabolic variations in macrophages critically influence their differentiation into pro-inflammatory or anti-inflammatory phenotypes, thereby contributing to immune homeostasis, defense against infection, and tissue repair. Dysregulation of macrophage immunometabolism has been closely implicated in several metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), hypertension, atherosclerosis, and gout, which positions macrophages as potential therapeutic targets. Recently, several natural products that target macrophage metabolic pathways have shown significant efficacy in managing metabolic diseases; however, a systematic review of these findings has yet to be conducted. This study consolidates natural products with immunoregulatory properties, including flavonoids, phenols, terpenoids, and naphthoquinones, which can alleviate chronic inflammation associated with metabolic disorders by modulating macrophage metabolic pathways, such as aerobic glycolysis, oxidative phosphorylation (OXPHOS), and fatty acid oxidation (FAO). This review aims to elucidate the metabolic regulation of the immune system, analyze metabolic alterations in macrophage associated with metabolic diseases, and summarize the beneficial roles of natural products in immunometabolism, providing novel insights for the prevention and therapeutic management of metabolic diseases.
Collapse
Affiliation(s)
- Jiani Li
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chen Guo
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Mi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chenglong Hua
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Tang
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Greco LP, Gallo L, La Greca G, Latteri S. Innovative treatments for obesity and NAFLD: A bibliometric study on antioxidants, herbs, phytochemicals, and natural compounds. Heliyon 2024; 10:e35498. [PMID: 39220898 PMCID: PMC11365328 DOI: 10.1016/j.heliyon.2024.e35498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing scientific interest in antioxidants and naturally derived compounds as potential remedies for obesity and non-alcoholic fatty liver disease (NAFLD) has led to extensive research. The objective of this bibliometric analysis is to present an updated perspective on the topic of antioxidants, herbs, phytochemicals, and natural compounds, in the control of obesity and NAFLD, to identify new areas for future research. Publications from the years 2012-2022 were retrieved using the Scopus database. The research trends were analyzed using the Biblioshiny and VOSviewer tools. The field has seen a significant increase in research activity, as indicated by an annual growth rate of 10 % in the number of published manuscripts. China, Korea, and the USA emerged as the most prominent contributors in this specific field, supported by their notable volumes of publications and citations. The density analysis revealed that the most frequently occurring authors' keywords related to herbal species are, in rank order, Camelia sinensis, Momordica charantia, Curcuma longa, Ilex paraguariensis, Panax ginseng, Moringa oleifera, Garcinia cambogia, Garcinia mangostana, Zingiber officinale, and Cinnamomum verum. In the group of antioxidants, phytochemicals, and natural compounds, the top 10 were resveratrol, curcumin, quercetin, vitamin E, alpha-lipoic acid, vitamin C, chlorogenic acid, lycopene, fucoxanthin, and berberine. The co-occurrence analysis unveiled significant themes and potential trends, including a notable interest in the impact of herbal species, antioxidants, phytochemicals, and natural compounds on obesity and NAFLD through the modulation of the gut microbiome. Another recurring theme that arises, is the ongoing investigation of molecular targets that demonstrate anti-adipogenesis properties. The analysis presented in this study provides valuable insights for researchers investigating the efficacy of antioxidants, herbs, phytochemicals, and natural compounds in addressing obesity and NAFLD. Through the use of bibliometric methods, the study offers a comprehensive overview. Furthermore, the findings of this analysis can serve as a foundation for future research in this specific domain.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| |
Collapse
|
4
|
Lin WS, Hwang SE, Koh YC, Ho PY, Pan MH. Modulatory Effects of Lactobacillus paracasei-Fermented Turmeric on Metabolic Dysregulation and Gut Microbiota in High-Fat Diet-Induced Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17924-17937. [PMID: 38965062 PMCID: PMC11328170 DOI: 10.1021/acs.jafc.4c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Turmeric, derived from Curcuma longa, and Lactobacillus paracasei, a lactic acid bacteria, have been studied for their potential antiobesity effects. To date, the antiobesity effects of turmeric fermented with L. paracasei have not been sufficiently investigated. This study was conducted via oral administration of 5% L. paracasei-fermented (FT) and unfermented turmeric (UT) in diet over 16 weeks using high-fat diet (HFD)-induced obese C57BL/6J mice. Results showed that the curcuminoid content of turmeric decreased following fermentation. Furthermore, FT significantly suppressed weight gain and liver and visceral adipose tissue weight and reduced plasma metabolic parameters in both the UT and FT experimental groups. The effects of FT were more noticeable than those of the unfermented form. Moreover, FT downregulated the expression of adipogenesis, lipogenesis, and inflammatory-related protein, but upregulated liver β-oxidation protein SIRT 1, PPARα, and PGC-1α in perigonadal adipose tissue. Additionally, FT ameliorated insulin resistance by activating insulin receptor pathway protein expressions in visceral adipose tissues. FT also modulated gut microbiota composition, particularly in two beneficial bacteria, Akkermansia muciniphila and Desulfovibrio, as well as two short-chain fatty acid-producing bacteria: Muribaculum intestinale and Deltaproteobacteria. Our findings indicate that the modulation effect of FT may be an important pathway for its antiobesity mechanisms.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Food Science, National Quemoy University, Quemoy 89250, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Siao-En Hwang
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Rodríguez IA, Serafini M, Alves IA, Lang KL, Silva FRMB, Aragón DM. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2022; 15:85. [PMID: 36678714 PMCID: PMC9867152 DOI: 10.3390/pharmaceutics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome that can be considered a growing health problem in the world. High blood glucose levels are one of the most notable clinical signs. Currently, new therapeutic alternatives have been tackled from clinicians' and scientists' points of view. Natural products are considered a promising source, due to the huge diversity of metabolites with pharmaceutical applications. Therefore, this review aimed to uncover the latest advances in this field as a potential alternative to the current therapeutic strategies for the treatment of DM. This purpose is achieved after a patent review, using the Espacenet database of the European Patent Office (EPO) (2016-2022). Final screening allowed us to investigate 19 patents, their components, and several technology strategies in DM. Plants, seaweeds, fungi, and minerals were used as raw materials in the patents. Additionally, metabolites such as tannins, organic acids, polyphenols, terpenes, and flavonoids were found to be related to the potential activity in DM. Moreover, the cellular transportation of active ingredients and solid forms with special drug delivery profiles is also considered a pharmaceutical technology strategy that can improve their safety and efficacy. From this perspective, natural products can be a promissory source to obtain new drugs for DM therapy.
Collapse
Affiliation(s)
- Ingrid Andrea Rodríguez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| | - Mairim Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, Sao Cristovao 49100-000, SE, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| | - Karen Luise Lang
- Departamento de Farmácia, Campus Governador Valadares, Universidade Federal de Juiz de Fora, Governador Valadares, Juiz de Fora 36038-330, MG, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica—Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, Florianópolis 88037-000, SC, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| |
Collapse
|