1
|
Tao B, Li X, Li X, Lu K, Song K, Mohsen M, Li P, Wang L, Zhang C. Derivatives of postbiotics (cell wall constituents) from Bacillus subtilis (LCBS1) relieve soybean meal-induced enteritis in bullfrog (Aquarana catesbeianus). Int J Biol Macromol 2024; 279:135359. [PMID: 39244121 DOI: 10.1016/j.ijbiomac.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Soybean meal (SM) serves as a primary alternative to fish meal in aquafeeds. However, a high-SM diet may result in intestinal injury. Our previous study demonstrated the probiotic effects of heat-inactivated Bacillus subtilis (LCBS1) on bullfrogs (Aquarana catesbeianus) fed a high-SM diet, probably attributed to the bioactive constituent of cell wall. Therefore, in this study, the main constituents of cell wall from LCBS1, including peptidoglycan (PGN), lipoteichoic acid (LTA), cell wall protein (CWP), and whole cell wall (WCW), were extracted and added to a high-SM (~55 %) diet to investigate their probiotic effects on bullfrogs and reveal the possible mechanisms. The results indicated that bullfrogs fed the LTA of LCBS1 showed the highest weight gain, feed efficiency, and protein efficiency ratio. Additionally, the LTA of LCBS1 could activate the humoral immunity and modulate intestinal microbiota. It might activate JAK2-STAT3 and MAPK-ERK pathways, as well as up-regulate tlr5 gene to promote intestinal cell proliferation, thereby alleviating jejunal injury. The WCW of LCBS1 effectively increased the growth performance of bullfrogs by improving the humoral immunity, enhancing intestinal barrier function, and alleviating intestinal inflammatory response. The PGN and CWP of LCBS1 could stimulate the humoral immunity and enhance intestinal barrier function, but had no significant effect on the growth performance of bullfrogs. In conclusion, the LTA might be the primary bioactive constituent of heat-inactivated LCBS1, with the beneficial effects of promoting intestinal cell proliferation and enhancing intestinal barrier function, therefore alleviating the intestinal injury induced by SM on bullfrogs. This study establishes a theoretical basis for the efficient utilization of plant proteins by the application of postbiotics additive in aquafeed, which further saves the feed costs and promotes development of economically sustainable aquaculture.
Collapse
Affiliation(s)
- Bingyi Tao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinyuan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Peng Li
- North American Renderers Association, Alexandria, VA, USA
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Yu Y, Zhou M, Sadiq FA, Hu P, Gao F, Wang J, Liu A, Liu Y, Wu H, Zhang G. Comparison of the effects of three sourdough postbiotics on high-fat diet-induced intestinal damage. Food Funct 2024; 15:9053-9069. [PMID: 39162079 DOI: 10.1039/d4fo02948h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
There is significant interest in using postbiotics as an intervention strategy to address obesity. This study assesses the efficacy of postbiotics derived from different sourdough strains (Lactiplantibacillus plantarum LP1, LP25, and Pediococcus pentosaceus PP18) in mitigating intestinal injury in zebrafish fed on a high-fat diet. We screened postbiotics for their anti-colon cancer cell effects and compared various preparation methods applied to live bacterial strains, including heat-killing at different temperatures, pH adjustments, and ultraviolet radiation exposure. Heat-killing at 120 °C proved to be the most effective preparation method. A marked variation in health effects was observed in the heat-killed microbial cells, as evidenced by their hydrophobicity and self-aggregation ability. A five-week high-fat dietary intervention study in zebrafish demonstrated that diets supplemented with 108 CFU g-1 K-LP25 significantly attenuated weight gain and body fat, along with reductions in FASN, Leptin, and SREBF1 mRNA expression. However, diets supplemented with 107 CFU g-1 K-PP18 only reduced Leptin and SREBF1 mRNA expression. K-PP18 was more effective at mitigating gut barrier damage, promoting colonic Occludin, ZO-1, and Claudin-1 levels. Additionally, K-LP25 supplementation markedly downregulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, reducing intestinal inflammation. Supplementation with K-LP1 and K-PP18 increased the abundance of Acinetobacter spp., whereas K-LP25 increased the abundance of Cetobacterium and Plesiomonas. Collectively, these findings suggest that inactivated strains confer protective effects against high-fat diet-induced intestinal damage in zebrafish, with variation observed across different species. Studying the effects of sourdough-derived postbiotics on gut health may open new avenues for dietary interventions to manage gut-related diseases.
Collapse
Affiliation(s)
- Yujuan Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Min Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Pengli Hu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Feng Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Juanxia Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Aowen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
3
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
4
|
Liu C, Qi X, Li D, Zhao L, Li Q, Mao K, Shen G, Ma Y, Wang R. Limosilactobacillus fermentum HF06-derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1702-1712. [PMID: 37851615 DOI: 10.1002/jsfa.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Paraprobiotics and postbiotics have shown potential in the treatment of ulcerative colitis (UC). However, their in vivo application is still in its infancy and their mechanisms of action are not well understood. RESULTS Here, we investigated the mitigation effects of Limosilactobacillus fermentum HF06-derived paraprobiotic (6-PA) and postbiotic (6-PS) on dextran sulfate sodium induced UC and the potential mechanisms. Results indicated that the administration of 6-PA and 6-PS resulted in the inhibition of weight loss and colon shortening in mice with UC. Furthermore, they led to a significant reduction in both fecal moisture content and the levels of proinflammatory cytokines and oxidative stress in the intestine of the mice. 6-PA and 6-PS treatment strengthened the intestinal mucosal barrier by dramatically upregulating the levels of zonula occludens-1 and occludin proteins. In addition, 6-PA and 6-PS restored intestinal dysbiosis by regulating abundances of certain bacteria, such as Bifidobacterium, Faecalibaculum, Muribaculaceae, Corynebacterium, Escherichia-Shigella and Clostridium_sensu_stricto_1, and regulated the level of short-chain fatty acids. CONCLUSION These findings illustrated for the first time that L. fermentum HF06-derived paraprobiotic and postbiotic enhanced the intestinal barrier function, and restored gut microbiota alterations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhong Liu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xiaofen Qi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Dan Li
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Le Zhao
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Ying Ma
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Ha S, Zhang X, Yu J. Probiotics intervention in colorectal cancer: From traditional approaches to novel strategies. Chin Med J (Engl) 2024; 137:8-20. [PMID: 38031348 PMCID: PMC10766304 DOI: 10.1097/cm9.0000000000002955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT The intestine harbors a large population of microorganisms that interact with epithelial cells to maintain host healthy physiological status. These intestinal microbiota engage in the fermentation of non-digestible nutrients and produce beneficial metabolites to regulate host homeostasis, metabolism, and immune response. The disruption of microbiota, known as dysbiosis, has been implicated in many intestinal diseases, including colorectal cancer (CRC). As the third most common cancer and the second leading cause of cancer-related death worldwide, CRC poses a significant health burden. There is an urgent need for novel interventions to reduce CRC incidence and improve clinical outcomes. Modulating the intestinal microbiota has emerged as a promising approach for CRC prevention and treatment. Current research efforts in CRC probiotics primarily focus on reducing the incidence of CRC, alleviating treatment-related side effects, and potentiating the efficacy of anticancer therapy, which is the key to successful translation to clinical practice. This paper aims to review the traditional probiotics and new interventions, such as next-generation probiotics and postbiotics, in the context of CRC. The underlying mechanisms of probiotic anti-cancer effects are also discussed, including the restoration of microbial composition, reinforcement of gut barrier integrity, induction of cancer cell apoptosis, inactivation of carcinogens, and modulation of host immune response. This paper further evaluates the novel strategy of probiotics as an adjuvant therapy in boosting the efficacy of chemotherapy and immunotherapy. Despite all the promising findings presented in studies, the evaluation of potential risks, optimization of delivery methods, and consideration of intra-patient variability of gut microbial baseline must be thoroughly interpreted before bench-to-bedside translation.
Collapse
Affiliation(s)
- Suki Ha
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Bu G, Chen G, Li J, Wu D, Liao J. Bifidobacterium bifidum BGN4 fractions ameliorate palmitic acid-induced hepatocyte ferroptosis by inhibiting SREBP1-CYP2E1 pathway. J Investig Med 2024; 72:67-79. [PMID: 37723650 DOI: 10.1177/10815589231204058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is strongly associated with disturbances in the intestinal microbiota. Herein, the biological effects and mechanism of Bifidobacterium bifidum BGN4 fractions in regulating hepatocyte ferroptosis during MAFLD progression were investigated. To establish an in vitro model of MAFLD, LO2 cells were subjected to palmitic acid (PA). The mRNA and protein expressions were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. LO2 cell proliferation was examined using 5-diphenyltetrazolium bromide (MTT) and ethynyl-2'-deoxyuridine (EdU) assays, whereas its apoptosis was evaluated by flow cytometry. Furthermore, level of reactive oxygen species (ROS) was measured using 2', 7,-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Additionally, the levels of Fe2+, malondialdehyde (MDA), and glutathione (GSH), as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were detected using corresponding kits. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were performed to analyze the interaction between sterol-regulatory element binding protein 1 (SREBP1) and cytochrome P450-2E1 (CYP2E1) promoter. Our results revealed that Bifidobacterium bifidum BGN4 fractions effectively ameliorated PA-induced hepatocyte injury, oxidative stress, and ferroptosis. However, these beneficial effects of BGN4 fractions on PA-induced hepatocyte were dramatically reversed by SREBP1 overexpression, suggesting that BGN4 attenuated MAFLD by acting on SREBP1. Moreover, we observed that BGN4 fractions inhibited CYP2E1 transcription by suppressing SREBP1 nuclear translocation. In addition, CYP2E1 overexpression eliminated the inhibitory effect of BGN4 fractions on PA-induced hepatocyte oxidative stress and ferroptosis. These findings collectively indicated that BGN4 fractions reduced CYP2E1 expression by inhibiting SREBP1 nuclear translocation, thereby suppressing hepatocyte oxidative stress and ferroptosis during the development of MAFLD.
Collapse
Affiliation(s)
- Guangkui Bu
- Department of Gastroenterology, Hunan Provincial People's Hospital The First-Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Gang Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital The First-Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Juan Li
- Department of Gastroenterology, Hunan Provincial People's Hospital The First-Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Dan Wu
- Department of Gastroenterology, Hunan Provincial People's Hospital The First-Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Jiangtao Liao
- Department of Gastroenterology, Hunan Provincial People's Hospital The First-Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
7
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Wei M, Liu D, Sun Y, Xie H, Du L, Jin Y. Mesalazine hollow suppositories based on 3D printing for treatment of ulcerative colitis. Int J Pharm 2023; 642:123196. [PMID: 37399930 DOI: 10.1016/j.ijpharm.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Mesalazine (MSZ) suppositories are a first-line medication for the localized treatment of ulcerative colitis (UC). However, the frequent defecation of patients with UC influences the retention of the suppository in the rectum and multiple doses have to be applied. Here, a mesalazine hollow suppository (MHS) is developed using three-dimensional (3D) printing. The MHS is composed of an inner supporting spring and an outer MSZ-loaded curved hollow shell. Springs were prepared using fused deposition modeling (FDM) 3D printing with thermoplastic urethane filaments, followed by splitting. The optimal parameters, including elasticity, filament diameter, spring inner diameter, and filament distance, were screened. The shell was prepared by FDM 3D printing utilizing MSZ, polyvinyl alcohol, and polyethylene glycol, which were assembled with springs to obtain FDM 3D-printed MHS (F-MHS); if 3D-printed metal molding was used in preparing shell, mold-formed MHS (M-MHS) was obtained. The F-MHS exhibited faster MSZ release than the M-MHS; therefore, the molding method is preferable. The inserted M-MHS was retained in the rat rectum for 5 h without affecting defecation. M-MHS alleviated tissue damage of UC rats and reduced inflammation with low levels of myeloperoxidase and proinflammatory cytokines. Personalized MHS is a promising medication for the localized treatment of UC.
Collapse
Affiliation(s)
- Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
9
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
10
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Jin W, Ai H, Huang Q, Li C, He X, Jin Z, Zuo Y. Preclinical evidence of probiotics in ulcerative colitis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1187911. [PMID: 37361217 PMCID: PMC10288114 DOI: 10.3389/fphar.2023.1187911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The imbalance of gastrointestinal microbial composition has been identified as the main factor of chronic inflammatory diseases. At present, probiotics have a beneficial effect on the microbial composition of the human gastrointestinal tract, but it is still controversial and the specific mechanism is unknown. The purpose of this network meta-analysis is to compare the mechanism of different probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were searched till 16 November 2022. The SYRCLE risk bias assessment tool was used to assess the quality of the research studies. A total of 42 studies, 839 ulcerative colitis models, and 24 kinds of probiotics were finally included. The results showed that L. rhamnosus has the best effect in relieving weight loss and improving the Shannon index in the ulcerative colitis model. E. faecium has the best effect in reducing colon injury; L. reuteri has the best effect in reducing the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing the expression of tight junction protein ZO-1; and L. coryniformis has the best effect in reducing the content of serum pro-inflammatory factor TNF-α. It indicated that probiotics can improve ulcerative colitis by improving histopathological manifestations, reducing inflammatory reaction, and repairing the mucosal barrier, and different probiotics showed different effects. However, considering the limitations of this study, preclinical studies that require more large samples and high-quality and more reliable and rigorous experimental designs and reports need to be conducted in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record details, identifier CRD42022383383.
Collapse
Affiliation(s)
- Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuncai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Li D, Gao Y, Cui L, Li Y, Ling H, Tan X, Xu H. Integrative analysis revealed the role of glucagon-like peptide-2 in improving experimental colitis in mice by inhibiting inflammatory pathways, regulating glucose metabolism, and modulating gut microbiota. Front Microbiol 2023; 14:1174308. [PMID: 37260689 PMCID: PMC10227514 DOI: 10.3389/fmicb.2023.1174308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent and remitting inflammation of the mucosa of the colon and rectum, the incidence of which is on the rise. Glucagon-like peptide-2 (GLP-2) is a newly discovered neurotrophic factor, but its efficacy and mechanism of action in UC remain unclear. In this study, we investigated the protective effects and potential targets of GLP-2 on dextran sodium sulfate (DSS)-induced UC in mice through integrative analysis. Methods The effects of GLP-2 on UC were assessed by calculating the disease activity index, colonic mucosal damage index, and pathological histological scores. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to detect the expression of GLP-2, nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3). The 16SrRNA gene was used to detect changes in gut microbiota in mouse colonic tissues, and oral glucose tolerance test (OGTT) blood glucose levels were used to analyze the differences in flora. Results The results showed that GLP-2 could reduce the inflammation of UC mice, which may be achieved by inhibiting the potential targets of NF-κB, and Janus kinase (JAK)/STAT3 inflammatory pathways, regulating sugar metabolism, increasing dominant species, and improving microbial diversity. Discussion This study provides new insight into the potential of GLP-2 for achieving more ideal UC treatment goals in future.
Collapse
Affiliation(s)
- Dongyue Li
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhong Gao
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Lanrong Cui
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Ling
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Tan
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyu Xu
- Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Zhang T, Zhang W, Feng C, Kwok LY, He Q, Sun Z. Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model. NPJ Sci Food 2022; 6:53. [PMID: 36379940 PMCID: PMC9666507 DOI: 10.1038/s41538-022-00169-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotics are increasingly used as adjunctive therapy to manage gastrointestinal diseases, such as ulcerative colitis. However, probiotic use has posed some safety concerns. Thus, postbiotics are proposed as alternatives to probiotics in clinical applications. However, no study has directly compared the clinical benefits of probiotics and postbiotics. This study compared the beneficial effect of postbiotics and probiotics derived from the strain, Bifidobacterium adolescentis B8598, in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Four groups of mice (n = 7 per group) were included in this work: Control (received water plus saline), DSS (received DSS without postbiotic/probiotic), Postbiotic (received DSS plus postbiotic), and Probiotic (received DSS plus probiotic). Our results showed that intragastric administration of both probiotic and postbiotic ameliorated colitis, reflected by decreased histology scores in Postbiotic and Probiotic groups compared with DSS group (P < 0.05). The fecal microbiota alpha diversity was not significantly affected by DSS-, postbiotic, or probiotic treatment. However, the postbiotic treatment showed stronger effects on modulating the fecal microbiota beta diversity, composition, and metagenomic potential than the probiotic treatment. Overall, our findings suggested that probiotics and postbiotics had similar ability to improve disease phenotype but had distinct ability to regulate the gut microbiota and metabolic pathways in the context of ulcerative colitis. In view of the smaller safety concern of postbiotics compared with probiotics and its stronger modulatory effect on the host gut microbiota, we propose that postbiotics are to be considered for use as next-generation biotherapeutics in managing ulcerative colitis or even other diseases.
Collapse
Affiliation(s)
- Tao Zhang
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Weiqin Zhang
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Cuijiao Feng
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Lai-Yu Kwok
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Qiuwen He
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Zhihong Sun
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| |
Collapse
|
14
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|