1
|
Bertens CJF, van Mechelen RJS, Berendschot TTJM, Gijs M, Wolters JEJ, Gorgels TGMF, Nuijts RMMA, Beckers HJM. Repeatability, reproducibility, and agreement of three tonometers for measuring intraocular pressure in rabbits. Sci Rep 2021; 11:19217. [PMID: 34584185 PMCID: PMC8478901 DOI: 10.1038/s41598-021-98762-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to evaluate repeatability, reproducibility, and agreement of three commonly used tonometers in animal research (TonoLab, TonoVet, and TonoPEN AVIA) in a cohort of 24 rabbits. Additionally, the impact of sedation on IOP was investigated in 21 New Zealand White rabbits with the TonoVet tonometer. Repeatability was determined using the coefficient of variation (CoV) for two observers. For the TonoLab (6.55%) and TonoVet (6.38%) the CoV was lower than for the TonoPEN AVIA (10.88%). The reproducibility was highest for the TonoVet (0.2 ± 3.3 mmHg), followed by the TonoLab (0 ± 12.89 mmHg) and lowest for the TonoPEN AVIA (− 1.48 ± 10.3 mmHg). The TonoLab and TonoVet showed the highest agreement (r = 0.85, R2 = 0.73). After sedation, a significant IOP reduction (often > 25%) was observed. Our results show that among the three tonometers tested, the TonoVet tonometer is best for use in rabbits while the TonoLab should be avoided. The impact of sedation on IOP was substantial and should be taken into account during experimentation.
Collapse
Affiliation(s)
- Christian J F Bertens
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands. .,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands.
| | - Ralph J S van Mechelen
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands
| | - Marlies Gijs
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Jarno E J Wolters
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Theo G M F Gorgels
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| | - Henny J M Beckers
- Department of Ophthalmology, University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center+ (MUMC+), P. Debyelaan 25, PO Box 5800, 6229 HX, Maastricht, The Netherlands.,Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS, Maastricht, The Netherlands
| |
Collapse
|
2
|
Chu TC, He Q, Potter DE. Biodegradable calcium phosphate nanoparticles as a new vehicle for delivery of a potential ocular hypotensive agent. J Ocul Pharmacol Ther 2002; 18:507-14. [PMID: 12537677 DOI: 10.1089/108076802321021054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to determine the efficacy of a newly prepared formulation containing biodegradable calcium phosphate nanoparticles (CAP) and 7-hydroxy-2-dipropyl-aminotetralin (7-OH-DPAT) in pigmented and non-pigmented rabbits using the surrogate end points of intraocular pressure (IOP) and aqueous flow rate. IOP (mmHg) was measured by utilizing a manometrically calibrated Mentor pneumatonometer. Rates of aqueous humor flow were measured with a Fluorotron Master by estimating the dilution rate of fluorescein. In non-pigmented rabbits, the ocular hypotension induced by topical administration of 7-OH-DPAT (75 microg) with CAP (115 microg) was more pronounced and sustained than that of 7-OH-DPAT without CAP. Furthermore, IOP-lowering effects of topically administered 7-OH-DPAT (125 microg) alone were markedly diminished in pigmented rabbits compared to non-pigmented rabbits. However, topical application of 7-OH-DPAT formulated with CAP produced significant dose-related (37.5, 75, 125 microg) reductions of IOP accompanied by suppression of aqueous humor flow rates in pigmented rabbits. It is postulated that 7-OH-DPAT in vehicle without CAP binds to pigments in the anterior segment of the pigmented rabbit's eyes, and this binding limits the 7-OH-DPAT's action. Pretreatment with raclopride, a dopamine D2/D3 receptor antagonist, reduced the ocular hypotensive effect induced by 7-OH-DPAT in vehicle containing CAP thereby supporting the role for dopamine D2/D3 receptors in modulating IOP. It is concluded that CAP, as a delivery system, enhances activity by 7-OH-DPAT in pigmented rabbit eyes suggesting that CAP is potentially useful for achieving controlled and targeted drug delivery for treatment of ocular diseases.
Collapse
Affiliation(s)
- Teh-Ching Chu
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | | | |
Collapse
|
3
|
Verbruggen AM, Akkerdaas LC, Hellebrekers LJ, Stades FC. The effect of intravenous medetomidine on pupil size and intraocular pressure in normotensive dogs. Vet Q 2000; 22:179-80. [PMID: 10952452 DOI: 10.1080/01652176.2000.9695052] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Medetomidine, a highly specific alpha-2 adrenergic agonist, has been demonstrated to lower intraocular pressure (IOP) in rabbits and cats when applied topically. The purpose of this study was to assess the influence of intravenously injected medetomidine on the pupil size (PS) and the IOP of non glaucomatous dogs. IOP was measured by applanation tonometry and PS was measured using Jameson calipers at t=0 (or time of IV injection of medetomidine (Domitor; Orion) at the dose of 1500 microg/m2 body surface area) and again after 5 minutes (t=5). The IV administration of medetomidine caused miosis in all 14 dogs. The mean PS decreased from 9.0 to 4.0 mm (p<0.001). The IOP was lowered in 10 dogs and in 4 dogs there was a rise in IOP. The mean IOP (mmHg) decreased from 22 to 21 (p>0.2). The data presented above confirm that medetomidine at a dose of 1500 microg/m2 body surface area produces miosis in non glaucomatous dogs, without influencing the IOP.
Collapse
Affiliation(s)
- A M Verbruggen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicne, Utrecht University, The Netherlands.
| | | | | | | |
Collapse
|