1
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
2
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121.3 DOI: 10.12688/f1000research.126227.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
El‐Guendouz S, Lyoussi B, Miguel MG. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem Biodivers 2019; 16:e1900094. [DOI: 10.1002/cbdv.201900094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Soukaina El‐Guendouz
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| | - Badiaa Lyoussi
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
| | - Maria G. Miguel
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| |
Collapse
|
6
|
Efficient therapeutic effect of Nigella sativa aqueous extract and chitosan nanoparticles against experimentally induced Acanthamoeba keratitis. Parasitol Res 2019; 118:2443-2454. [PMID: 31144032 DOI: 10.1007/s00436-019-06359-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Acanthamoeba keratitis (AK) is a devastating, painful corneal infection, which may lead to loss of vision. The development of resistance and failure of the currently used drugs represent a therapeutic predicament. Thus, novel therapies with lethal effects on resistant Acanthamoeba are necessary to combat AK. In the present study, the curative effect of Nigella sativa aqueous extract (N. sativa) and chitosan nanoparticles (nCs) and both agents combined were assessed in experimentally induced AK. All inoculated corneas developed varying grades of AK. The study medications were applied on the 5th day postinoculation and were evaluated by clinical examination of the cornea and cultivation of corneal scraps. On the 10th day posttreatment, a 100% cure of AK was obtained with nCs (100 μg/ml) in grades 1 and 2 of corneal opacity as well as with N. sativa 60 mg/ml-nCs 100 μg/ml in grades 1, 2, and 3 of corneal opacity, highlighting a possible synergistic effect. On the 15th day posttreatment, a 100% cure was reached with N. sativa aqueous extract (60 mg/ml). Moreover, on the 20th day posttreatment, N. sativa (30 mg/ml) provided a cure rate of 87.5%, while nCs (50 μg/ml) as well as N. sativa 30 mg/ml-nCs 50 μg/ml yielded a cure rate of 75%; the lowest percentage of cure (25%) was obtained with chlorhexidine (0.02%), showing a non-significant difference compared to the parasite control. The clinical outcomes were in agreement with the results of corneal scrap cultivation. The results of the present study demonstrate the effectiveness of N. sativa aqueous extract and nCs (singly or combined) when used against AK, and these agents show potential for the development of new, effective, and safe therapeutic alternatives.
Collapse
|
7
|
Kaya Y, Baldemir A, Karaman Ü, Ildız N, Arıcı YK, Kaçmaz G, Kolören Z, Konca Y. Amebicidal effects of fenugreek ( Trigonella foenum-graecum) against Acanthamoeba cysts. Food Sci Nutr 2019; 7:563-571. [PMID: 30847135 PMCID: PMC6392877 DOI: 10.1002/fsn3.849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022] Open
Abstract
Trigonella foenum-graecum L. (TF) is known to the public as a chest emollient, mucous expectorant, laxative and is used to prevent maturation of boils and diabetes since ancient times. In this study, we aimed to determine the amebicidal effects against Acanthamoeba cysts. Plant extracts were prepared at concentrations of 1, 2, 4, 8, 16, and 32 mg/ml and were placed in a hemocytometer with cell counts 22 × 106 cell/ml. The fatty acid profiles of TF seeds were determined. Standard Acanthamoeba cysts were added and incubated at 25°C. The viability of the parasite was checked and recorded at hours 3, 24, 48, 72, 96, and 102. The values of lethal concentration doses (LD50 and LD90) were calculated using probit analysis. This study revealed that T. foenum-graecum prevented proliferation of the parasite at certain times. However, further for in vivo and controlled experimental studies are needed in order to find out how to use this plant as medication.
Collapse
Affiliation(s)
- Yasemin Kaya
- Faculty of MedicineDepartment of Internal MedicineOrdu UniversityOrduTurkey
| | - Ayşe Baldemir
- Faculty of PharmacyDepartment of Pharmaceutical BotanyErciyes UniversityKayseriTurkey
| | - Ülkü Karaman
- Faculty of MedicineMedical Parasitology DepartmentOrdu UniversityOrduTurkey
| | - Nilay Ildız
- Faculty of PharmacyDepartment of Pharmaceutical MicrobiologyErciyes UniversityKayseriTurkey
| | - Yeliz Kasko Arıcı
- Faculty of MedicineBiostatistics DepartmentOrdu UniversityOrduTurkey
| | - Gamze Kaçmaz
- Faculty of MedicineMedical Microbiology DepartmentGiresun UniversityGiresunTurkey
| | - Zeynep Kolören
- Department of BiologyOrdu University Faculty of Arts and SciencesOrduTurkey
| | - Yusuf Konca
- Faculty of AgricultureDepartment of Feed and Animal FeedingErciyes UniversityKayseriTurkey
| |
Collapse
|
8
|
Monzote L, Cuesta-Rubio O, Campo Fernandez M, Márquez Hernandez I, Fraga J, Pérez K, Kerstens M, Maes L, Cos P. In vitro antimicrobial assessment of Cuban propolis extracts. Mem Inst Oswaldo Cruz 2012; 107:978-84. [DOI: 10.1590/s0074-02762012000800003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Jorge Fraga
- Institute of Tropical Medicine Pedro Kouri, Cuba
| | - Kleich Pérez
- Institute of Tropical Medicine Pedro Kouri, Cuba
| | | | | | | |
Collapse
|
9
|
Miguel MG, Antunes MD. Is propolis safe as an alternative medicine? J Pharm Bioallied Sci 2012; 3:479-95. [PMID: 22219581 PMCID: PMC3249695 DOI: 10.4103/0975-7406.90101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/10/2011] [Accepted: 05/20/2011] [Indexed: 01/09/2023] Open
Abstract
Propolis is a resinous substance produced by honeybees as defense against intruders. It has relevant therapeutic properties that have been used since ancient times. Nowadays, propolis is of increasing importance as a therapeutic, alone or included in many medicines and homeopathic products or in cosmetics. Propolis is produced worldwide and honeybees use the flora surrounding their beehives for its production. Therefore its chemical composition may change according to the flora. The phenolic and volatile fractions of propolis have been revised in the present study, as well as some of the biological properties attributed to this natural product. An alert is given about the need to standardize this product, with quality control. This has already been initiated by some authors, mainly in the propolis from the poplar-type. Only this product can constitute a good complementary and alternative medicine under internationally acceptable quality control.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Faculty of Sciences and Technology, Department of Chemistry and Pharmacy, University of Algarve, IBB, Center for Plant Biotechnology, Building 8, Campus de Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
10
|
David ÉB, de Carvalho TB, Oliveira CMBD, Coradi ST, Sforcin JM, Guimarães S. Characterisation of protease activity in extracellular products secreted byGiardia duodenalistrophozoites treated with propolis. Nat Prod Res 2012; 26:370-4. [DOI: 10.1080/14786419.2010.515547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Damiani N, Fernández NJ, Maldonado LM, Álvarez AR, Eguaras MJ, Marcangeli JA. Bioactivity of propolis from different geographical origins on Varroa destructor (Acari: Varroidae). Parasitol Res 2010; 107:31-7. [DOI: 10.1007/s00436-010-1829-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
|
12
|
In vitro antileishmanial activity of Adana propolis samples on Leishmania tropica: a preliminary study. Parasitol Res 2008; 102:1217-25. [PMID: 18264819 DOI: 10.1007/s00436-008-0896-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Propolis (bee glue) is a natural resinous hive product, collected from various plant sources. It has attracted much attention as a useful substance applied in medicine due to its pharmacological activities. It was aimed to investigate the in vitro effects of an ethanolic extract of Adana propolis samples on the growth of Leishmania tropica. Parasite cells were treated with five concentrations (25, 50, 100, 50, 500, and 750 microg/ml) of the propolis. The number of promastigotes in each concentration was calculated using a hemocytometer slide at 24, 48, and 72 h after being harvested. In the experiments, it was determined that the concentrations up to 100 mug/ml of the propolis did not exhibit antileishmanial activity against the parasites cells. At these concentrations, there was no changes in terms of morphologically. In addition, there was no statistically significant difference in terms of cell count between control and these three groups (p > 0.05). However, in culture media containing the propolis samples at 250, 500, and 750-microg/ml concentrations, statistically significant differences in cell counts were observed, as compared to the control group (p < 0.05). Our results demonstrate that ethanolic extracts of Adana propolis samples reduce the proliferation of L. tropica parasites significantly.
Collapse
|
13
|
Vural A, Polat ZA, Topalkara A, Toker MI, Erdogan H, Arici MK, Cetin A. The effect of propolis in experimental Acanthamoeba keratitis. Clin Exp Ophthalmol 2008; 35:749-54. [PMID: 17997780 DOI: 10.1111/j.1442-9071.2007.01620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To examine the effect of propolis in a rat model of Acanthamoeba keratitis and to determine its in vitro cytotoxicity in cultured corneal epithelial cells. METHODS Eighteen Wistar albino rats were used. Cultured corneal epithelial cells obtained from two healthy rats for in vitro cytotoxicity of propolis. Corneal stromal inoculation was performed in 16 rats with amoebic culture containing 1 x 10(6) amoeba/mL. Rats with Acanthamoeba keratitis 5 days later after the inoculation were divided randomly into four groups, and eight eyes of each group were treated with study drugs. The propolis, chlorhexidine (CHX), propolis plus CHX and control eyes were treated with topical propolis, 0.002% CHX, propolis plus 0.002% CHX and lubricant eye drops, respectively. The study drugs were instilled every one hour for 10 days. All eyes were examined and keratitis graded by slit-lamp biomicroscopy on days 2, 5 and 10 during the administration of the study drugs. After the completion of keratitis grading, all the 16 rats were humanely killed and their corneas were excised and used for Acanthamoeba culture to evaluate presence of Acanthamoeba growth after treatment 14 days later. RESULTS Concentrations of propolis higher than 7.81 mg/mL cause damage to corneal epithelial cells in the experiment of in vitro cytotoxicity of propolis on corneal epithelial cells. The keratitis grade on day 2 in the CHX eyes was significantly lower than that in the control eyes (P < 0.05). The keratitis grades on days 5 and 10 in the propolis, CHX and propolis plus CHX eyes were significantly lower compared with those on days 5 and 10 in the control eyes (P < 0.05). In the propolis eyes, the keratitis grade on day 5 was significantly lower than that on day 2 (P < 0.05), and it was significantly lower on day 10 compared with that on day 5 (P < 0.05). In the CHX and propolis plus CHX eyes, the keratitis grade on day 10 was significantly lower compared with that on days 2 and 5 (P < 0.05). In the control eyes, there was no significant difference in the keratitis grades on days 2, 5 and 10 (P > 0.05). The culture positivity at Acanthamoeba growth after treatment experiment in the propolis, CHX and propolis plus CHX eyes was significantly lower than that in the control eyes (P < 0.05). CONCLUSIONS We suggest that propolis had amoebicidal properties in this rat model of Acanthamoeba keratitis. Further investigations to evaluate the antimicrobial activity of the individual fractions of the resin could yield more information about its mechanism of action in treating this disease.
Collapse
Affiliation(s)
- Ayse Vural
- Department of Ophthalmology, Cumhuriyet University School of Medicine, Sivas, Turkey.
| | | | | | | | | | | | | |
Collapse
|