1
|
Scheidecker S, Bär S, Stoetzel C, Geoffroy V, Lannes B, Rinaldi B, Fischer F, Becker HD, Pelletier V, Pagan C, Acquaviva-Bourdain C, Kremer S, Mirande M, Tranchant C, Muller J, Friant S, Dollfus H. Mutations in KARS cause a severe neurological and neurosensory disease with optic neuropathy. Hum Mutat 2019; 40:1826-1840. [PMID: 31116475 DOI: 10.1002/humu.23799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.
Collapse
Affiliation(s)
- Sophie Scheidecker
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Séverine Bär
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Béatrice Lannes
- Service d'Anatomo-pathologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Frédéric Fischer
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Hubert D Becker
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valérie Pelletier
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Pagan
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Kremer
- Service de Neuroradiologie/Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Tranchant
- Service de Neurologie Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sylvie Friant
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Jacob TF, Singh V, Dixit M, Ginsburg-Shmuel T, Fonseca B, Pintor J, Youdim MBH, Major DT, Weinreb O, Fischer B. A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist. Purinergic Signal 2018; 14:271-284. [PMID: 30019187 DOI: 10.1007/s11302-018-9614-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 μM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 μM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.
Collapse
Affiliation(s)
- Tali Fishman Jacob
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Vijay Singh
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Mudit Dixit
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Tamar Ginsburg-Shmuel
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Begoña Fonseca
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Jesus Pintor
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Moussa B H Youdim
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Dan T Major
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| | - Orly Weinreb
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel.
| | - Bilha Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
3
|
Pérez de Lara MJ, Guzmán-Aranguez A, Gómez-Villafuertes R, Gualix J, Miras-Portugal MT, Pintor J. Increased Ap 4A levels and ecto-nucleotidase activity in glaucomatous mice retina. Purinergic Signal 2018; 14:259-270. [PMID: 29948577 DOI: 10.1007/s11302-018-9612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
Abstract
The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Ana Guzmán-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain.
| |
Collapse
|
4
|
Poltronieri P, Čerekovic N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. CHALLENGES 2018; 9:3. [DOI: 10.3390/challe9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.
Collapse
|