1
|
Castañeda Cataña MA, Dodes Traian MM, Rivas Marquina AP, Marquez AB, Arrúa EC, Carlucci MJ, Damonte EB, Pérez OE, Sepúlveda CS. Design and characterization of BSA-mycophenolic acid nanocomplexes: Antiviral activity exploration. Int J Biol Macromol 2024; 265:131023. [PMID: 38513897 DOI: 10.1016/j.ijbiomac.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) μM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Mayra A Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Andrea P Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - Agostina B Marquez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Eva C Arrúa
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - María J Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina.
| |
Collapse
|
2
|
Srivastava V, Chary PS, Rajana N, Pardhi ER, Singh V, Khatri D, Singh SB, Mehra NK. Complex ophthalmic formulation technologies: Advancement and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
4
|
Suwannoi P, Sarisuta N. Preparation process by desolvation method for enhanced loading of acyclovir nanoparticles. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this investigation was to qualitatively study on preparation process of enhanced loading acyclovir (ACV) in ACV-loaded bovine serum albumin (BSA) prepared by desolvation method with submerged jet of desolvating agent. The prepared ACV-loaded BSA nanoparticles in sterile water for injection (SWI) and isotonic trehalose solution were shown to be monodisperse with sizes of around 120 to 200 nm and zeta potentials of around -7 to -50 mV. However, those in phosphate buffer saline (PBS) were found to exhibit much larger sizes with polydispersity, which might be attributed to the effect of ionic strength. The loading efficiency was found to be around 60%. An increase in the amount of ACV added to the system could significantly improve the loading capacity by almost the same ratio, which may be due to molecular mixing behavior of submerged jet of desolvating agent.
Collapse
|
5
|
Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021; 191:591-599. [PMID: 34562538 DOI: 10.1016/j.ijbiomac.2021.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Development of ocular drug delivery system is one of the most technically challenging tasks, when compared with other routes of drug delivery. Eye (an intricate organ) is highly sophisticated and sensitive organ due to presence of various structurally differed anatomical layers, which many times limits the drug delivery approaches. Despite several limitations, many advancements have been made as evidence from various recent studies involving improvement of both residence time and permeation of the drug at the ocular region. In the last few decades, albumin(s) based ophthalmic products have been gained most attention to solve the major challenges associated with conventional ocular drug delivery systems. Interestingly, an albumin-based micro, nano, conjugates, and genetically fused target specific to ligand(s) formulation being exploited through many studies for successful ocular delivery of bioactives (mostly repurposed drugs). Past and current studies suggested that albumin(s) based ocular drug delivery system is multifunctional in nature and capable of extending both drug residence time and sustaining the release of drugs to deliver desired pharmacological outcomes. Despite wide applications, still complete progress made in albumin based ocular drug delivery is limited in literature and missing in market. So, herein we presented an overview to explore the key concepts of albumin-based nanocarrier(s) including strategies involved in the treatment of ocular disease, that have yet to be explored.
Collapse
Affiliation(s)
- Rahul Tiwari
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Anamika Sahu Gulbake
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana 500037, India
| | - U S N Murty
- National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
6
|
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331:30-44. [PMID: 33450319 PMCID: PMC7803629 DOI: 10.1016/j.jconrel.2021.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has resulted in unprecedented increases in sickness, death, economic disruption, and social disturbances globally. However, the virus (SARS-CoV-2) that caused this pandemic is only one of many viruses threatening public health. Consequently, it is important to have effective means of preventing viral transmission and reducing its devastating effects on human and animal health. Although many antivirals are already available, their efficacy is often limited because of factors such as poor solubility, low permeability, poor bioavailability, un-targeted release, adverse side effects, and antiviral resistance. Many of these problems can be overcome using advanced antiviral delivery systems constructed using nanotechnology principles. These delivery systems consist of antivirals loaded into nanoparticles, which may be fabricated from either synthetic or natural materials. Nevertheless, there is increasing emphasis on the development of antiviral delivery systems from natural substances, such as lipids, phospholipids, surfactants, proteins, and polysaccharides, due to health and environmental issues. The composition, morphology, dimensions, and interfacial characteristics of nanoparticles can be manipulated to improve the handling, stability, and potency of antivirals. This article outlines the major classes of antivirals, summarizes the challenges currently limiting their efficacy, and highlights how nanoparticles can be used to overcome these challenges. Recent studies on the application of antiviral nanoparticle-based delivery systems are reviewed and future directions are described.
Collapse
Affiliation(s)
- Rana Delshadi
- Food Science and Technology Graduate, Menomonie, WI, USA
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
7
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111445. [DOI: 10.1016/j.msec.2020.111445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022]
|
9
|
Mazzilli MRF, Ambrósio JAR, da Silva Godoy D, da Silva Abreu A, Carvalho JA, Junior MB, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1457-1474. [PMID: 32326844 DOI: 10.1080/09205063.2020.1760702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently several scientific-technological advances in the health area have developed. Among them, we can highlight research addressing nanoscience and nanotechnology focusing on the development of formulations for the cancer treatment. This work describes the synthesis and characterization of bovine serum albumin (BSA) polyelectrolytic nanoparticles for controlled release using silicon dihydroxide phthalocyanine [SiPc (OH)2] as a photosensitizer model for application in Photodynamic Therapy (PDT). BSA nanoparticles were prepared by the one-step desolvation process and the nanoparticulate system was coated with polyelectrolytes using poly-(4-styrene sulfonate - PSS) as a strong polyanion and polyallylamine hydrochloride (PAH) as a weak polycation by the technique self-assembling layer-by-layer (LbL). The formulation was characterized and available in cellular culture. The profile of drug release was investigated and compared to that of free [SiPc (OH)2]. The nanoparticles have a mean diameter of 226.9 nm, a narrow size distribution with polydispersive index of 0.153, smooth surface and spherical shape. [SiPc(OH)2] loaded nanoparticles maintain its photophysical behaviour after encapsulation. The polyelectrolytic nanoparticles improved efficiency in release and photocytotoxicity assay when compared to pure drug. The results demonstrate that photosensitizer adsorption on BSA nanoparticles together with biopolymer layer-by-layer assembly provides a way to manufacture biocompatible nanostructured materials that are intended for use as biomaterials for Photodynamic Therapy applications.
Collapse
Affiliation(s)
- Mariana Ribeiro Farah Mazzilli
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | | | - Daniele da Silva Godoy
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Alexandro da Silva Abreu
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Janicy Arantes Carvalho
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Milton Beltrame Junior
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, Brazil
| |
Collapse
|
10
|
Suwannoi P, Chomnawang M, Tunsirikongkon A, Phongphisutthinan A, Müller-Goymann CC, Sarisuta N. TAT-surface modified acyclovir-loaded albumin nanoparticles as a novel ocular drug delivery system. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
12
|
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2018; 555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Glioblastoma is one of the most rapaciously growing cancer within the brain with an average lifespan of 12-15 months (5-year survival <3-4%). Doxorubicin (DOX) is clinically utilized as a first line drug in the treatment of Glioblastoma, however, its restricted entry into the brain via the blood-brain barrier (BBB), limited blood-tumor barrier (BTB) permeability, hemotoxicity, short mean half-life of 1-3 hr as well as rapid body clearance results in tremendously diminished bioactivity in glioblastoma. Dendrimer-Cationized-Albumin (dCatAlb) was synthesized following the carboxyl activation technique and the synthesized biopolymer was characterized by FTIR, MALDI-TOF and zeta potential. The prepared dCatAlb was encrusted on DOX-loaded PLGA nanoparticle core to develop a novel hybrid DOX nanoformulation (dCatAlb-pDNP; particle size: 156 ± 10.85 nm; ƺ: -10.0 ± 2.1 mV surface charge). The formulated dCatAlb-pDNP showed a unique pH-dependent DOX release profile, diminished hemolytic toxicity, higher drug uptake (<0.001) and cytotoxicity in U87MG glioblastoma cells, increase levels of caspase-3 gene in U87MG cells (approximately 5.35-fold higher) inferred that anticancer activity is primarily taking place through caspase-mediated apoptosis mechanism. The developed novel DOX nanoformulation also showed superior trans-epithelial permeation transport across monolayer bEnd.3 cells as well as notable biocompatibility and stability. The dCatAlb-pDNP showed enhanced BBB permeation efficacy as confirmed permeation assay in bEnd.3 cell-based model. The long-term formulation stability of developed nanoformulations was studied by storing them at 5 ± 2 °C and 30 ± 2 °C/60 ± 5% Relative Humidity (% RH) in the stability chamber for a period of 60 days (ICHQ1A (R2)). The outcomes of this investigation evidently indicate that dCatAlb-pDNP offers superior anticancer activity of DOX in glioblastoma cells while significantly improving its BBB permeation. The developed formulation is a biocompatible, safer and commercially viable approach to delivering DOX selectively in sustained manner glioblastoma while countering its hemolytic toxic effect, which is a major ongoing issue with conventional DOX injectable available in the market today.
Collapse
Affiliation(s)
- Vimalkumar Johnson Muniswamy
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
13
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|