1
|
El-Fatah SSA, Nafea OE, Yousef DM, Samy W, Hussien MHS, Arakeep HM. Tempol mitigates inflammation, oxidative stress, and histopathological alterations of cadmium-induced parotid gland injury in rats. Life Sci 2024; 359:123233. [PMID: 39522715 DOI: 10.1016/j.lfs.2024.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a potent environmental pollutant that causes functional and structural damage to the salivary glands. Tempol (TEM) has powerful antioxidant activity that can potentially preserve organ function. AIMS This study was designed to investigate the protective effects of TEM on Cd-induced toxicity in rat parotid salivary glands. MATERIALS AND METHODS Twenty-four adult Wistar male rats were randomly assigned to four equal groups: control, TEM (27.5 g/100 ml), Cd (0.6 g/100 ml), and TEM plus Cd (at the same doses). All treatments were dissolved in distilled water and administered subcutaneously four times a week for four weeks. Parotid gland tissues were isolated and subjected to molecular and histo-biochemical assessments. KEY FINDINGS TEM exerted a prophylactic effect against Cd-induced toxicity in the parotid glands by controlling inflammation through the downregulation of toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B/ interleukin-1 beta mRNA expression, upregulation of aquaporin-5 mRNA expression, improvement of the oxidant/antioxidant status in the parotid gland, mitigation of endoplasmic reticulum stress, and repair of the associated histological and ultrastructural abnormalities. SIGNIFICANCE TEM protects against Cd-induced toxicity in the parotid glands of rats, attributable at least in part to its anti-inflammatory and antioxidant properties, as well as its ability to inhibit ER stress and facilitate glandular repair. However, the protective effects of TEM did not reach the levels observed in the control group. TEM could be a promising clinical candidate for protecting the salivary glands, particularly in high-risk groups such as workers exposed to Cd and cigarette smokers.
Collapse
Affiliation(s)
- Samaa Salah Abd El-Fatah
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H S Hussien
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba M Arakeep
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt; Public Health Department, College of Applied Medical Sciences, King Faisal University, P.O. Box 400, AlAhsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Yadav KS, Bisen AC, Ishteyaque S, Sharma I, Verma S, Sanap SN, Verma S, Washimkar KR, Kumar A, Tripathi V, Bhatta RS, Mugale MN. Solanum nigrum Toxicity and Its Neuroprotective Effect Against Retinal Ganglion Cell Death Through Modulation of Extracellular Matrix in a Glaucoma Rat Model. J Ocul Pharmacol Ther 2024; 40:309-324. [PMID: 38603587 DOI: 10.1089/jop.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 μg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.
Collapse
Affiliation(s)
- Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Nashik Sanap
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Vineeta Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Botany, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Hybrid nanostructured gadolinium oxide-collagen-dextran polymeric hydrogel for corneal repair and regeneration. Int J Biol Macromol 2022; 224:1423-1438. [DOI: 10.1016/j.ijbiomac.2022.10.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
4
|
Ghosh AK, Bacellar-Galdino M, Iqbal S, Pappenhagen NE, Kaja S. Topical Porphyrin Antioxidant Protects Against Ocular Surface Pathology in a Novel Rabbit Model for Particulate Matter-Induced Dry Eye Disease. J Ocul Pharmacol Ther 2022; 38:294-304. [PMID: 35384749 PMCID: PMC9125571 DOI: 10.1089/jop.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Particulate matter (PM) is a primary cause for the development of acute and chronic dry eye disease, especially irritant-induced conjunctivitis. The purpose of the present study was to determine the effects of fine atmospheric PM on the rabbit ocular surface, and determine the protective effects of a synthetic antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro and in vivo. Methods: Rabbit corneal epithelial cells (SIRC) were exposed to increasing concentrations of PM to determine the effects on cell motility and viability. The in vivo effects of topically instilled PM were tested in New Zealand White rabbits. Comprehensive ophthalmic exams and corneal fluorescein staining were performed. Results: Exposure to PM resulted in dose-dependent cell death and impaired cellular motility; Mn-TM-2-PyP protected against PM-induced cytotoxicity and significantly increased SIRC cell motility. In vivo, exposure to PM (5 mg/ml, topical, 3 times daily for 7 days) resulted in signs of dry eye, notably hyperemia, increased corneal fluorescein staining, and decreased tear volumes. Mn-TM-2-PyP significantly improved hyperemia and corneal fluorescein readouts but had no effect on tear production. Lifitegrast (Xiidra®) showed similar pharmacologic efficacy to Mn-TM-2-PyP. Conclusion: Overall, these data provide evidence that PM induces phenotypes of ocular surface disease responsive to antioxidant and immunosuppressant therapy. To our knowledge this is the first report of a large animal model to study PM-induced ocular surface disease. The present work provides standardized experimental paradigms for the comprehensive in vitro and in vivo testing of novel therapeutic approaches targeting PM-induced conjunctivitis and dry-eye.
Collapse
Affiliation(s)
- Anita Kirti Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Loyola University Chicago, Maywood, Illinois, USA.,Visual Neurobiology and Signal Transduction Laboratory, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.,Research & Development Division, Experimentica Ltd., Forest Park, Illinois, USA
| | | | - Sana Iqbal
- Visual Neurobiology and Signal Transduction Laboratory, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.,Research & Development Division, Experimentica Ltd., Forest Park, Illinois, USA
| | | | - Simon Kaja
- Visual Neurobiology and Signal Transduction Laboratory, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.,Research & Development Division, Experimentica Ltd., Forest Park, Illinois, USA.,Department of Ophthalmology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.,Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA.,North Texas Eye Research Institute, University of North Texas-Health Science Center at Fort Worth, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Kim J, Chun J, Ahn M, Jung K, Moon C, Shin T. Blood-retina barrier dysfunction in experimental autoimmune uveitis: the pathogenesis and therapeutic targets. Anat Cell Biol 2022; 55:20-27. [PMID: 35354673 PMCID: PMC8968224 DOI: 10.5115/acb.21.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, Korea
| | - Jiyoon Chun
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
6
|
Jadi PK, Sharma P, Bhogapurapu B, Roy S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front Chem 2021; 9:694998. [PMID: 34458234 PMCID: PMC8386189 DOI: 10.3389/fchem.2021.694998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial keratitis is a leading cause of blindness worldwide and results in unilateral vision loss in an estimated 2 million people per year. Bacteria and fungus are two main etiological agents that cause corneal ulcers. Although antibiotics and antifungals are commonly used to treat corneal infections, a clear trend with increasing resistance to these antimicrobials is emerging at rapid pace. Extensive research has been carried out to determine alternative therapeutic interventions, and antimicrobial peptides (AMPs) are increasingly recognized for their clinical potential in treating infections. Small molecules targeted against virulence factors of the pathogens and natural compounds are also explored to meet the challenges and growing demand for therapeutic agents. Here we review the potential of AMPs, small molecules, and natural compounds as alternative therapeutic interventions for the treatment of corneal infections to combat antimicrobial resistance. Additionally, we have also discussed about the different formats of drug delivery systems for optimal administration of drugs to treat microbial keratitis.
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Prerana Sharma
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | - Bharathi Bhogapurapu
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sanhita Roy
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
7
|
Tempol differently affects cellular redox changes and antioxidant enzymes in various lung-related cells. Sci Rep 2021; 11:14869. [PMID: 34290305 PMCID: PMC8295274 DOI: 10.1038/s41598-021-94340-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023] Open
Abstract
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a potential redox agent in cells. The present study investigated changes in cellular reactive oxygen species (ROS) and glutathione (GSH) levels and in antioxidant enzymes, in Tempol-treated Calu-6 and A549 lung cancer cells, normal lung WI-38 VA-13 cells, and primary pulmonary fibroblasts. Results demonstrated that Tempol (0.5–4 mM) either increased or decreased general ROS levels in lung cancer and normal cells at 48 h and specifically increased O2•− levels in these cells. In addition, Tempol differentially altered the expression and activity of antioxidant enzymes such as superoxide dismutase, catalase, and thioredoxin reductase1 (TrxR1) in A549, Calu-6, and WI-38 VA-13 cells. In particular, Tempol treatment increased TrxR1 protein levels in these cells. Tempol at 1 mM inhibited the growth of lung cancer and normal cells by about 50% at 48 h but also significantly induced cell death, as evidenced by annexin V-positive cells. Furthermore, down-regulation of TrxR1 by siRNA had some effect on ROS levels as well as cell growth inhibition and death in Tempol-treated or -untreated lung cells. In addition, some doses of Tempol significantly increased the numbers of GSH-depleted cells in both cancer cells and normal cells at 48 h. In conclusion, Tempol differentially increased or decreased levels of ROS and various antioxidant enzymes in lung cancer and normal cells, and induced growth inhibition and death in all lung cells along with an increase in O2•− levels and GSH depletion.
Collapse
|
8
|
Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, Dong X, Fang Z, Li W. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med 2021; 22:782. [PMID: 34055081 PMCID: PMC8145787 DOI: 10.3892/etm.2021.10214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a toxic component of cell walls of Gram-negative bacteria that are widely present in gastrointestinal tracts. Increasing evidence showed that LPS plays important roles in the pathogeneses of neurodegenerative disorders, such as Alzheimer's disease (AD). NADPH oxidase s2 (NOX2) is a complex membrane protein that contributes to the production of reactive oxygen species (ROS) in several neurological diseases. The NLRP1 inflammasome can be activated in response to an accumulation of ROS in neurons. However, it is still unknown whether LPS exposure can deteriorate neuronal damage by activating NOX2-NLRP1 inflammasomes. Ginsenoside Rg1 (Rg1) has protective effects on neurons, although whether Rg1 alleviates LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes remains unclear. In the present study, the effect of concentration gradients and different times of LPS exposure on neuronal damage was investigated in HT22 cells, and further observed the effect of Rg1 treatment on NOX2-NLPR1 inflammasome activation, ROS production and neuronal damage in LPS-treated HT22 cells. The results demonstrated that LPS exposure significantly induced NOX2-NLRP1 inflammasome activation, excessive production of ROS, and neuronal damage in HT22 cells. It was also shown that Rg1 treatment significantly decreased NOX2-NLRP1 inflammasome activation and ROS production and alleviated neuronal damage in LPS-induced HT22 cells. The present data suggested that Rg1 has protective effects on LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes in HT22 cells, and Rg1 may be a potential therapeutic approach for delaying neuronal damage in AD.
Collapse
Affiliation(s)
- Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yali Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junyan Zhang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhirui Fang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Zhang F, Chen H, Lan J, Song K, Wu X. Preparation and in vitro/in vivo evaluations of novel ocular micelle formulations of hesperetin with glycyrrhizin as a nanocarrier. Exp Eye Res 2020; 202:108313. [PMID: 33080302 DOI: 10.1016/j.exer.2020.108313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to explore the potential of formulating hesperetin into an ophthalmic solution with dipotassium glycyrrhizinate (DG) as a micelle nanocarrier. A DG-based micelle ophthalmic solution encapsulating hesperetin (DG-Hes) was developed and its in vitro/in vivo characterizations were evaluated. The optimal formulation featured a DG/hesperetin (Hes) weight ratio of 12:1 and an encapsulation efficiency of 90.4 ± 1.7%; The optimized DG-Hes was characterized as small uniform spheres with an average micelle size of 70.93 ± 3.41 nm, a polydispersity index of 0.11 ± 0.02, and an electrically negative surface (-36.12 ± 2.79 mV). The DG-Hes ophthalmic solution had good tolerance in rabbit eyes. DG-Hes significantly improved the in vitro passive permeation, ex vivo corneal permeation, and in vivo ocular bioavailability of Hes. DG-Hes showed markedly increases in in vitro antioxidant activity. In vitro antibacterial activity tests revealed a lower minimum inhibitory concentration and lower minimum bactericidal concentration for DG-Hes ophthalmic solution were lower than for free Hes. DG-Hes ophthalmic solution also significantly reduced symptoms of eye infection in the rabbit bacterial keratitis model when compared to a Hes suspension. These results suggest that DG-Hes eye drops may be useful as a new ophthalmic preparation for the treatment of ocular diseases, especially bacterial ophthalmopathy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Huabo Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jie Lan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Kaichao Song
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
10
|
Berchtikou A, Sokullu E, Nahar S, Tijssen P, Gauthier MA, Ozaki T. Comparative study on the inactivation of MS2 and M13 bacteriophages using energetic femtosecond lasers. JOURNAL OF BIOPHOTONICS 2020; 13:e202000109. [PMID: 32701195 DOI: 10.1002/jbio.202000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Femtosecond (fs) laser irradiation techniques are emerging tools for inactivating viruses that do not involve ionizing radiation. In this work, the inactivation of two bacteriophages representing protective capsids with different geometric constraints, that is, the near-spherical MS2 (with a diameter of 27 nm) and the filamentous M13 (with a length of 880 nm) is compared using energetic visible and near-infrared fs laser pulses with various energies, pulse durations, and exposure times. Intriguingly, the results show that inactivation using 400 nm lasers is substantially more efficient for MS2 compared to M13. In contrast, using 800 nm lasers, M13 was slightly more efficiently inactivated. For both viruses, the genome was exposed to a harmful environment upon fs-laser irradiation. However, in addition to the protection of the genome, the metastable capsids differ in many properties required for stepwise cell entry that may explain their dissimilar behavior after (partial) disassembly. For MS2, the dominant mechanism of fs-laser inactivation was the aggregation of the viral capsid proteins, whereas aggregation did not affect M13 inactivation, suggesting that the dominant mechanism of M13 inactivation was related to breaking of secondary protein links.
Collapse
Affiliation(s)
- Aziz Berchtikou
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Esen Sokullu
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Sharifun Nahar
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Peter Tijssen
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marc A Gauthier
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Tsuneyuki Ozaki
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| |
Collapse
|
11
|
Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces 2020; 194:111157. [DOI: 10.1016/j.colsurfb.2020.111157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
|