1
|
Wang F, Xu Y, Zhou Q, Xie L. Biomolecule-based hydrogels as delivery systems for limbal stem cell transplantation: A review. Int J Biol Macromol 2024; 280:135778. [PMID: 39304050 DOI: 10.1016/j.ijbiomac.2024.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Limbal stem cell deficiency (LSCD) is a complex disease of the cornea resulting from dysfunction and/or loss of limbal stem cells (LSCs) and their niche. Most patients with LSCD cannot be treated by conventional corneal transplants because the donor tissue lacks the LSCs necessary for corneal epithelial regeneration. Successful treatment of LSCD depends on effective stem cell transplantation to the ocular surface for replenishment of the LSC reservoir. Thus, stem cell therapies employing carrier substrates for LSCs have been widely explored. Hydrogel biomaterials have many favorable characteristics, including hydrophilicity, flexibility, cytocompatibility, and optical properties suitable for the transplantation of LSCs. Therefore, due to these properties, along with the necessary signals for stem cell proliferation and differentiation, hydrogels are ideal carrier substrates for LSCD treatment. This review summarizes the use of different medical-type hydrogels in LSC transplantation from 2001 to 2024. First, a brief background of LSCD is provided. Then, studies that employed various hydrogel scaffolds as LSC carriers are highlighted to provide a multimodal strategic reference for LSCD treatment. Finally, an analysis of prospective future developments and challenges in the field of hydrogels as LSC carriers for treating LSCD is presented.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Yuehe Xu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| |
Collapse
|
2
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
4
|
Can Human Oral Mucosa Stem Cells Differentiate to Corneal Epithelia? Int J Mol Sci 2021; 22:ijms22115976. [PMID: 34205905 PMCID: PMC8198937 DOI: 10.3390/ijms22115976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as—Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell’s capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers—CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.
Collapse
|
5
|
Abstract
Purpose: To review the surgical management options in ocular chemical burn, including newer advances.Methods: Online literature search of published articles over last 5 years on surgical management of ocular chemical burn and newer advances were performed on December 30, 2020.Results: Following literature search and screening using adequate filters, 67 review articles on surgical management of ocular chemical burns were retrieved. The review talks about the surgical management options starting from Debridement in acute stage to various visual rehabilitative procedures in the chronic stage. The review also highlights the evolving surgical advances in this field.Conclusion: It is imperative to choose adequate surgical tool wherever applicable; current review discusses the role of each surgical option at different clinical stages in detail.
Collapse
Affiliation(s)
- Priyanshi Awasthi
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| | - Prabhakar Singh
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| | - Amit Raj
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
6
|
Human amniotic membrane as a delivery vehicle for stem cell-based therapies. Life Sci 2021; 272:119157. [PMID: 33524418 DOI: 10.1016/j.lfs.2021.119157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy is known as a regenerative approach for a variety of diseases and tissue injuries. These cells exert their therapeutic effects through paracrine secretions namely extracellular vesicles. To achieve higher therapeutic potential, a variety of delivery routes have been tested in clinical and preclinical studies. Direct cell injection, intra-venous administration, and intra-arterial infusion are widely used methods of stem cells delivery but these methods are associated with several complications. As one of the most popular biological delivery systems, amniotic membrane has been widely utilized to support cell proliferation and differentiation therefore facilitating tissue regeneration without endangering the stem cells' viability. It is composed of several extracellular matrix components and growth factors. Due to these characteristics, amniotic membrane can mimic the stem cell's niche and can be an ideal carrier for stem cell transplantation. Here, we provide an overview of the recent progress, challenges, and future perspectives in the use of amniotic membrane as a delivery platform for stem cells.
Collapse
|
7
|
Dadkhah Tehrani F, Firouzeh A, Shabani I, Shabani A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front Bioeng Biotechnol 2021; 8:606982. [PMID: 33520961 PMCID: PMC7839407 DOI: 10.3389/fbioe.2020.606982] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
The amniotic membrane (AM) is the innermost layer of the fetal placenta, which surrounds and protects the fetus. Its unique structure, in addition to its physical and biological properties, makes it a useful substance in many applications related to regenerative medicine. The use of this fantastic substance with a century-old history has produced remarkable results in vivo, in vitro, and even in clinical studies. While the intact or preserved AM is widely used for these purposes, the addition of further modifications to AM can be considered as a relatively new subject in its applications. These modifications are applied to improve AM properties, ease of handling, and durability. Here, we will discuss the cases in which AM has undergone additional modifications besides the required processes for sterilization and preservation. In this article, we have categorized these modifications and discussed their applications and results.
Collapse
Affiliation(s)
- Fatemeh Dadkhah Tehrani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Arezoo Firouzeh
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Iman Shabani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Shabani
- Preventative Gynecology Research Center, Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|