1
|
Xie L, Lin F, Dong P, Li Y. MAb Targeting a Link Between ExoN and MTase of TGEV NSP14. Monoclon Antib Immunodiagn Immunother 2023; 42:178-181. [PMID: 37855908 PMCID: PMC10621669 DOI: 10.1089/mab.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Porcine transmissible gastroenteritis virus (TGEV) infection results in severe gastrointestinal disease manifesting vomiting, diarrhea in neonatal porcine, with extremely high mortality. Monoclonal antibody (MAb) specific to TGEV nonstructural protein (NSP)14 that contains two functional domains, exonuclease (ExoN) and methyltransferase (MTase) domains, may help elucidate the role of NSP14 in the viral life-cycle. In this study, we developed a murine MAb, designated 12F1, against TGEV NSP14 using traditional cell-fusion technique. It was shown the MAb can exclusively bind to viral NSP14, as evidenced by the results of indirect fluorescent assay and western blotting. Intriguingly, epitope screening assay shown that 12F1 targets a hinge region connecting ExoN and N7-MTase of NSP14.
Collapse
Affiliation(s)
- Lilan Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Department of Basic Medicine, Medical School, Hubei Polytechnic University, Huangshi, China
| | - Fang Lin
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Peiling Dong
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Yaoming Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
- Department of Biology of Mucosal Pathogen, College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| |
Collapse
|
2
|
Howard-Jones AR, Pham D, Sparks R, Maddocks S, Dwyer DE, Kok J, Basile K. Arthropod-Borne Flaviviruses in Pregnancy. Microorganisms 2023; 11:433. [PMID: 36838398 PMCID: PMC9959669 DOI: 10.3390/microorganisms11020433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are a diverse group of enveloped RNA viruses that cause significant clinical manifestations in the pregnancy and postpartum periods. This review highlights the epidemiology, pathophysiology, clinical features, diagnosis, and prevention of the key arthropod-borne flaviviruses of concern in pregnancy and the neonatal period-Zika, Dengue, Japanese encephalitis, West Nile, and Yellow fever viruses. Increased disease severity during pregnancy, risk of congenital malformations, and manifestations of postnatal infection vary widely amongst this virus family and may be quite marked. Laboratory confirmation of infection is complex, especially due to the reliance on serology for which flavivirus cross-reactivity challenges diagnostic specificity. As such, a thorough clinical history including relevant geographic exposures and prior vaccinations is paramount for accurate diagnosis. Novel vaccines are eagerly anticipated to ameliorate the impact of these flaviviruses, particularly neuroinvasive disease manifestations and congenital infection, with consideration of vaccine safety in pregnant women and children pivotal. Moving forward, the geographical spread of flaviviruses, as for other zoonoses, will be heavily influenced by climate change due to the potential expansion of vector and reservoir host habitats. Ongoing 'One Health' engagement across the human-animal-environment interface is critical to detect and responding to emergent flavivirus epidemics.
Collapse
Affiliation(s)
- Annaleise R. Howard-Jones
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Rebecca Sparks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
| | - Dominic E. Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead, NSW 2145, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead, NSW 2145, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
3
|
Liu N, Li Y. A Monoclonal Antibody Targeting C-Terminal Domain of Transmissible Gastroenteritis Virus Spike Protein. Monoclon Antib Immunodiagn Immunother 2022; 41:328-332. [PMID: 36525526 DOI: 10.1089/mab.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The structure and function of the C-terminus domain (CTD) of porcine transmissible gastroenteritis virus (TGEV) spike protein remain largely unknown, thereby a specific monoclonal antibody (MAb) allows us to fully understand this domain. In this study, we developed a murine MAb against CTD of TGEV spike protein, as evidenced by the results of indirect fluorescent assay, Western blotting, and fluorescence-activated cell sorter. Further study showed that the MAb is able to exclusively recognize a 12-residue peptide (FKNVSDGVIYSV) derived from CTD of TGEV spike protein. This MAb can be used to elucidate the potential function of CTD of TGEV spike in virus attachment and entry, and warrants further intensive investigation.
Collapse
Affiliation(s)
- Na Liu
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Yaoming Li
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China.,Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| |
Collapse
|