1
|
Serotypes and Clonal Composition of Streptococcus pneumoniae Isolates Causing IPD in Children and Adults in Catalonia before 2013 to 2015 and after 2017 to 2019 Systematic Introduction of PCV13. Microbiol Spectr 2021; 9:e0115021. [PMID: 34878302 PMCID: PMC8653838 DOI: 10.1128/spectrum.01150-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to investigate the distribution of serotypes and clonal composition of Streptococcus pneumoniae isolates causing invasive pneumococcal disease (IPD) in Catalonia, before and after systematic introduction of PCV13. Pneumococcal strains isolated from normally sterile sites obtained from patients of all ages with IPD received between 2013 and 2019 from 25 health centers of Catalonia were included. Two study periods were defined: presystematic vaccination period (2013 and 2015) and systematic vaccination period (SVP) (2017 to 2019). A total of 2,303 isolates were analyzed. In the SVP, there was a significant decrease in the incidence of IPD cases in children 5 to 17 years old (relative risk [RR] 0.61; 95% confidence interval [CI] 0.38 to 0.99), while there was a significant increase in the incidence of IPD cases in 18- to 64-year-old adults (RR 1.33; 95% CI 1.16 to 1.52) and adults over 65 years old (RR 1.23; 95% CI 1.09 to 1.38). Serotype 8 was the major emerging serotype in all age groups except in 5- to 17-year-old children. In children younger than 5 years old, the main serotypes in SVP were 24F, 15A, and 3, while in adults older than 65 years they were serotypes 3, 8, and 12F. A significant decrease in the proportions of clonal complexes CC156, CC191, and ST306 and an increase in those of CC180, CC53, and CC404 were observed. A steady decrease in the incidence of IPD caused by PCV13 serotypes indicates the importance and impact of systematic vaccination. The increase of non-PCV13 serotypes highlights the need to expand serotype coverage in future vaccines and rethink vaccination programs for older adults. IMPORTANCE We found that with the incorporation of the PCV13 vaccine, the numbers of IPD cases caused by serotypes included in this vaccine decreased in all of the age groups. Still, there was an unforeseen increase of the serotypes not included in this vaccine causing IPD, especially in the >65-year-old group. Moreover, a significant increase of serotype 3 included in the vaccine has been observed; this event has been reported by other researchers. These facts call for the incorporation of more serotypes in future vaccines and a more thorough surveillance of the dynamics of this microorganism.
Collapse
|
2
|
Luck JN, Tettelin H, Orihuela CJ. Sugar-Coated Killer: Serotype 3 Pneumococcal Disease. Front Cell Infect Microbiol 2020; 10:613287. [PMID: 33425786 PMCID: PMC7786310 DOI: 10.3389/fcimb.2020.613287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Capsular polysaccharide (CPS), which surrounds the bacteria, is one of the most significant and multifaceted contributors to Streptococcus pneumoniae virulence. Capsule prevents entrapment in mucus during colonization, traps water to protect against desiccation, can serve as an energy reserve, and protects the bacterium against complement-mediated opsonization and immune cell phagocytosis. To date, 100 biochemically and serologically distinct capsule types have been identified for S. pneumoniae; 20 to 30 of which have well-defined propensity to cause opportunistic human infection. Among these, serotype 3 is perhaps the most problematic as serotype 3 infections are characterized as having severe clinical manifestations including empyema, bacteremia, cardiotoxicity, and meningitis; consequently, with a fatality rate of 30%-47%. Moreover, serotype 3 resists antibody-mediated clearance despite its inclusion in the current 13-valent conjugate vaccine formulation. This review covers the role of capsule in pneumococcal pathogenesis and the importance of serotype 3 on human disease. We discuss how serotype 3 capsule synthesis and presentation on the bacterial surface is distinct from other serotypes, the biochemical and physiological properties of this capsule type that facilitate its ability to cause disease, and why existing vaccines are unable to confer protection. We conclude with discussion of the clonal properties of serotype 3 and how these have changed since introduction of the 13-valent vaccine in 2000.
Collapse
Affiliation(s)
- Jennifer N. Luck
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Serotype and clonal distribution dynamics of invasive pneumococcal strains after PCV13 introduction (2011-2016): Surveillance data from 23 sites in Catalonia, Spain. PLoS One 2020; 15:e0228612. [PMID: 32027715 PMCID: PMC7004304 DOI: 10.1371/journal.pone.0228612] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/21/2020] [Indexed: 01/08/2023] Open
Abstract
Background The objective of this study is to describe incidence and shifts of serotype and clonal distribution of invasive Streptococcus pneumoniae strains in four different age groups (<5 years, 5–17 years, 18–64 years and >65 years) during a period of intermediate PCV13 vaccination coverage (2011–2016) in Catalonia, Spain. Methods We included all pneumococcal strains systematically sent to the Catalan support laboratory for molecular surveillance of invasive pneumococcal disease (IPD) located at Hospital Sant Joan de Deu, Barcelona. Two study periods were considered: 2011–13, early PCV13 vaccination period (EVP) and 2014–2016, late vaccination period (LVP). Results A total of 2142 strains were included in the study. Five years after intermediate introduction of PCV13 in our population, a significant decrease of overall incidence of IPD in children <5 years was observed (incidence rate ratio 0.5, 95% confidence interval 0.4–0.8). However, in seniors older than 65 years, a significant increase of overall incidence of IPD was observed (IRR 1.4, 95% CI 1.1–1.7). The contribution of PCV13 vaccine serotypes to IPD declined significantly in all age groups: from 59% to 38.1% in <5 years; 82.7% to 59% in 5–17 years, 47.8% to 34.1% in 18–64 years and 48.2% to 37% in >65 years. Results found when comparing both periods were consistent with IRRs observed year by year. In children <5 years, the three major serotypes detected were 1, 24F and 19A in EVP vs 24F, 14 and 10A in LVP. Among patients 5–17 years the first three serotypes were 1, 12F and 14 both in EVP and LVP. Among adults 18–64, the three major serotypes detected were 1, 12F and 8 vs 8, 12F and 3, respectively. Finally, in patients >65 years the most frequently isolated serotypes were 3, 19A and 7F vs 3, 14 and 12F, respectively. Regarding clonal complexes (CCs) expressing mainly PCV13 serotypes, significant decreases of the proportions of CC306, CC191 and CC320 were observed, while CC156 showed a significant increase. As for CCs expressing mostly non-PCV13 serotypes, significant increases in ST989, CC53 and CC404 were showed. Conclusions Despite low vaccine coverage in our setting a significant decrease of incidence of IPD was observed in children younger than 5 years. The modest indirect protection against vaccine serotypes causing IPD in elderly indicate the need for the inclusion of more serotypes in future high-valent PCV and vaccinating old adults should be considered.
Collapse
|
4
|
Silva-Costa C, Brito MJ, Pinho MD, Friães A, Aguiar SI, Ramirez M, Melo-Cristino J. Pediatric Complicated Pneumonia Caused by Streptococcus pneumoniae Serotype 3 in 13-Valent Pneumococcal Conjugate Vaccinees, Portugal, 2010-2015. Emerg Infect Dis 2019; 24:1307-1314. [PMID: 29912700 PMCID: PMC6038763 DOI: 10.3201/eid2407.180029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite use of 7-valent pneumococcal conjugate vaccine, incidence of pleural effusion and empyema (pediatric complicated pneumococcal pneumonia [PCPP]) is reportedly increasing globally. We cultured and performed PCR on 152 pleural fluid samples recovered from pediatric patients in Portugal during 2010–2015 to identify and serotype Streptococcus pneumoniae. We identified only 17 cases by culture, but molecular methods identified S. pneumoniae in 68% (92/135) of culture-negative samples. The most frequent serotypes were 3, 1, and 19A, together accounting for 62% (68/109) of cases. Nineteen cases attributable to 13-valent pneumococcal conjugate vaccine (PCV13) serotypes (mostly serotype 3) were detected among 22 children age-appropriately vaccinated with PCV13. The dominance of the additional serotypes included in PCV13 among PCPP cases in Portugal continues, even with PCV13 available on the private market (without reimbursement) since 2010 and with average annual coverage of 61% among age-eligible children. Our data suggest reduced effectiveness of PCV13 against serotype 3 PCPP.
Collapse
MESH Headings
- Adolescent
- Child
- Child, Preschool
- Female
- History, 21st Century
- Humans
- Immunization, Secondary
- Infant
- Male
- Pneumococcal Vaccines/administration & dosage
- Pneumococcal Vaccines/adverse effects
- Pneumococcal Vaccines/immunology
- Pneumonia, Pneumococcal/epidemiology
- Pneumonia, Pneumococcal/etiology
- Pneumonia, Pneumococcal/history
- Pneumonia, Pneumococcal/prevention & control
- Portugal/epidemiology
- Serogroup
- Streptococcus pneumoniae/classification
- Streptococcus pneumoniae/immunology
- Vaccination
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/adverse effects
- Vaccines, Conjugate/immunology
Collapse
|
5
|
Abstract
Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Its virulence is largely due to its polysaccharide capsule, which shields it from the host immune system, and because of this, the capsule has been extensively studied. Studies of the capsule led to the identification of DNA as the genetic material, identification of many different capsular serotypes, and identification of the serotype-specific nature of protection by adaptive immunity. Recent studies have led to the determination of capsular polysaccharide structures for many serotypes using advanced analytical technologies, complete elucidation of genetic basis for the capsular types, and the development of highly effective pneumococcal conjugate vaccines. Conjugate vaccine use has altered the serotype distribution by either serotype replacement or switching, and this has increased the need to serotype pneumococci. Due to great advances in molecular technologies and our understanding of the pneumococcal genome, molecular approaches have become powerful tools to predict pneumococcal serotypes. In addition, more-precise and -efficient serotyping methods that directly detect polysaccharide structures are emerging. These improvements in our capabilities will greatly enhance future investigations of pneumococcal epidemiology and diseases and the biology of colonization and innate immunity to pneumococcal capsules.
Collapse
|
6
|
Ramirez M. Streptococcus pneumoniae. MOLECULAR MEDICAL MICROBIOLOGY 2015:1529-1546. [DOI: 10.1016/b978-0-12-397169-2.00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Identification of genes involved in salt tolerance and symbiotic nitrogen fixation in chickpea rhizobium Mesorhizobium ciceri Ca181. Symbiosis 2013. [DOI: 10.1007/s13199-013-0264-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Gu X, Bar-Peled M. The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase. PLANT PHYSIOLOGY 2004; 136:4256-64. [PMID: 15563616 PMCID: PMC535855 DOI: 10.1104/pp.104.052365] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/25/2004] [Accepted: 10/25/2004] [Indexed: 05/17/2023]
Abstract
UDP-GlcA 4-epimerase (UGlcAE) catalyzes the epimerization of UDP-alpha-D-glucuronic acid (UDP-GlcA) to UDP-alpha-D-galacturonic acid (UDP-GalA). UDP-GalA is a precursor for the synthesis of numerous cell-surface polysaccharides in bacteria and plants. Using a biochemical screen, a gene encoding AtUGlcAE1 in Arabidopsis (Arabidopsis thaliana) was identified and the recombinant enzyme biochemically characterized. The gene belongs to a small gene family composed of six isoforms. All members of the UGlcAE gene family encode a putative type-II membrane protein and have two domains: a variable N-terminal region approximately 120 amino acids long composed of a predicted cytosolic, transmembrane, and stem domain, followed by a large conserved C-terminal catalytic region approximately 300 amino acids long composed of a highly conserved catalytic domain found in a large protein family of epimerase/dehydratases. The recombinant epimerase has a predicted molecular mass of approximately 43 kD, although size-exclusion chromatography suggests that it may exist as a dimer (approximately 88 kD). AtUGlcAE1 forms UDP-GalA with an equilibrium constant value of approximately 1.9 and has an apparent K(m) value of 720 microm for UDP-GlcA. The enzyme has maximum activity at pH 7.5 and is active between 20 degrees C and 55 degrees C. Arabidopsis AtUGlcAE1 is not inhibited by UDP-Glc, UDP-Gal, or UMP. However, the enzyme is inhibited by UDP-Xyl and UDP-Ara, suggesting that these nucleotide sugars have a role in regulating the synthesis of pectin. The cloning of the AtUGlcAE1 gene will increase our ability to investigate the molecular factors that regulate pectin biosynthesis in plants. The availability of a functional recombinant UDP-GlcA 4-epimerase will be of considerable value for the facile generation of UDP-d-GalA in the amounts required for detailed studies of pectin biosynthesis.
Collapse
Affiliation(s)
- Xiaogang Gu
- Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712, USA
| | | |
Collapse
|
9
|
Trzcinski K, Thompson CM, Lipsitch M. Construction of otherwise isogenic serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain TIGR4. Appl Environ Microbiol 2004; 69:7364-70. [PMID: 14660386 PMCID: PMC309976 DOI: 10.1128/aem.69.12.7364-7370.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide capsule is the primary virulence factor in Streptococcus pneumoniae. There are at least 90 serotypes of S. pneumoniae, identified based on the immunogenicity of different capsular sugars. The aim of this study was to construct pneumococcal strains that are isogenic except for capsular type. Serotype 4 strain TIGR4 was rendered unencapsulated by recombinational replacement of the capsular polysaccharide synthesis (cps) locus with the bicistronic Janus cassette (C. K. Sung, J. P. Claverys, and D. A. Morrison, Appl. Environ. Microbiol. 67:5190-5196, 2001). In subsequent transformation with chromosomal DNA, the cassette was replaced by the cps locus derived from a strain of a different serotype, either 6B, 7F, 14, or 19F. To minimize the risk of uncontrolled recombinational replacements in loci other than cps, the TIGRcps::Janus strain was "backcross" transformed three times with chromosomal DNA of subsequently constructed capsular type transformants. Capsular serotypes were confirmed in all new capsule variants by the Quellung reaction. Restriction fragment length polymorphism (RFLP) analysis of the cps locus confirmed the integrity of the cps region transformed into the TIGR strain, and RFLP of the flanking regions confirmed their identities with the corresponding regions of the recipient. Transformants had in vitro growth rates greater than or equal to that of TIGR4. All four strains were able to colonize C57BL/6 mice (female, 6 weeks old) for at least 7 days when mice were intranasally inoculated with 6 x 10(6) to 8 x 10(6) CFU. The constructed capsular variants of TIGR4 are suitable for use in studies on the role of S. pneumoniae capsular polysaccharide in immunity, colonization, and pathogenesis.
Collapse
Affiliation(s)
- Krzysztof Trzcinski
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
10
|
Spízek J, Novotná J, Rezanka T. Lincosamides: Chemical Structure, Biosynthesis, Mechanism of Action, Resistance, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:121-54. [PMID: 15566978 DOI: 10.1016/s0065-2164(04)56004-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jaroslav Spízek
- Institute of Microbiology Academy of Sciences of the Czech Republic 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
11
|
Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 2003; 86:407-23. [PMID: 12647947 DOI: 10.3168/jds.s0022-0302(03)73619-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many strains of Streptococcus thermophilus synthesize extracellular polysaccharides. These molecules may be produced as capsules that are tightly associated with the cell, or they may be liberated into the medium as a loose slime (i.e., "ropy" polysaccharide). Although the presence of exopolysaccharide does not confer any obvious advantage to growth or survival of S. thermophilus in milk, in situ production by this species or other dairy lactic acid bacteria typically imparts a desirable "ropy" or viscous texture to fermented milk products. Recent work has also shown that exopolysaccharide-producing S. thermophilus can enhance the functional properties of Mozzarella cheese, but they are not phage-proof. As our understanding of the genetics, physiology, and functionality of bacterial exopolysaccharides continues to improve, novel applications for polysaccharides and polysaccharide-producing cultures are likely to emerge inside and outside the dairy industry. This article provides an overview of biochemistry, genetics, and applications of exopolysaccharide production in S. thermophilus.
Collapse
Affiliation(s)
- J R Broadbent
- Western Dairy Center, Department of Nutrition and Food Sciences, Utah State University, Logan 84322-8700, USA.
| | | | | | | | | |
Collapse
|
12
|
Genomic Structure of Capsular Determinants. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-642-56031-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
|
15
|
Chaffin DO, Beres SB, Yim HH, Rubens CE. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J Bacteriol 2000; 182:4466-77. [PMID: 10913080 PMCID: PMC94618 DOI: 10.1128/jb.182.16.4466-4477.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae is a primary cause of neonatal morbidity and mortality. Essential to the virulence of this pathogen is the production of a type-specific capsular polysaccharide (CPS) that enables the bacteria to evade host immune defenses. The identification, cloning, sequencing, and functional characterization of seven genes involved in type III capsule production have been previously reported. Here, we describe the cloning and sequencing of nine additional adjacent genes, cps(III)FGHIJKL, neu(III)B, and neu(III)C. Sequence comparisons suggested that these genes are involved in sialic acid synthesis, pentasaccharide repeating unit formation, and oligosaccharide transport and polymerization. The type III CPS (cpsIII) locus was comprised of 16 genes within 15.5 kb of contiguous chromosomal DNA. Primer extension analysis and investigation of mRNA from mutants with polar insertions in their cpsIII loci supported the hypothesis that the operon is transcribed as a single polycistronic message. The translated cpsIII sequences were compared to those of the S. agalactiae cpsIa locus, and the primary difference between the operons was found to reside in cps(III)H, the putative CPS polymerase gene. Expression of cps(III)H in a type Ia strain resulted in suppression of CPS Ia synthesis and in production of a CPS which reacted with type III-specific polyclonal antibody. Likewise, expression of the putative type Ia polymerase gene in a type III strain reduced synthesis of type III CPS with production of a type Ia immunoreactive capsule. Based on the similar structures of the oligosaccharide repeating units of the type Ia and III capsules, our observations demonstrated that cps(Ia)H and cps(III)H encoded the type Ia and III CPS polymerases, respectively. Additionally, these findings suggested that a single gene can confer serotype specificity in organisms that produce complex polysaccharides.
Collapse
Affiliation(s)
- D O Chaffin
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital Regional Medical Center, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
16
|
Gilbert C, Robinson K, Le Page RW, Wells JM. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun 2000; 68:3251-60. [PMID: 10816470 PMCID: PMC97573 DOI: 10.1128/iai.68.6.3251-3260.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to develop a new system for the analysis of capsular biosynthetic pathways we have explored the possibility of expressing type 3 capsular polysaccharide (CPS) from the pathogen Streptococcus pneumoniae in Lactococcus lactis, an unencapsulated lactic acid bacterium being developed as a vaccine delivery vehicle for mucosal immunization. Only three of the four type 3 CPS biosynthesis genes were found to be necessary for the abundant formation (120 mg liter(-1)) of an extracellular type 3 CPS in L. lactis, implying a role for the type 3-specific synthase in the extracellular transport of the CPS or implying the existence of an alternative export system in L. lactis. The authenticity of the expressed heterologous polysaccharide was established by chemical and immunological analyses. Proton and carbon nuclear magnetic resonance spectroscopy of CPSs purified from L. lactis and S. pneumoniae showed that the two CPS structures were identical. When mice were immunized intraperitoneally with 3.5 x 10(6) CFU of live recombinant lactococci expressing a total of approximately 0.5 microgram of type 3 CPS, the immune responses elicited appeared identical to those observed in mice inoculated with 0.5 microgram of type 3 CPS purified from S. pneumoniae. These findings show that L. lactis is a useful host in which to study the role and function of genes involved in the production of bacterial capsules. Additionally, L. lactis shows potential as a host for the safe production of capsule antigens and as a vaccine delivery vehicle for polysaccharide antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Bacterial Vaccines/immunology
- Cloning, Molecular
- Gene Expression
- Injections, Intraperitoneal
- Lactococcus lactis/genetics
- Lactococcus lactis/immunology
- Mice
- Nuclear Magnetic Resonance, Biomolecular
- Polysaccharides, Bacterial/biosynthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/genetics
- Streptococcus pneumoniae/enzymology
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/immunology
- Vaccination
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- C Gilbert
- Cortecs Centre for Vaccine Discovery, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Pawlowski A, Källenius G, Svenson SB. Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Vaccine 2000; 18:1873-85. [PMID: 10699336 DOI: 10.1016/s0264-410x(99)00336-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a global urgent need for a new efficient and inexpensive vaccine to combat pneumococcal disease, which should also be affordable in developing countries. In view of this need a simple low-cost technique to prepare such a vaccine was developed. The preparation of serotype 14 and 23F pneumococcal capsular polysaccharide (PnPS)-protein conjugates to be included in a forthcoming multivalent PnPS conjugate vaccine is described. Commercial lots of PnPSs produced according to Good Manufacturing Practice from Streptococcus pneumoniae serotype 14 (PS14) and 23F (PS23F) were partially depolymerized by sonication or irradiation in an electron beam accelerator. The PnPS fragments were conjugated to tetanus toxoid (TT) using a recently developed conjugation chemistry. The application of these new simple, efficient and inexpensive fragmentation and conjugation technologies allowed the synthesis of several PnPS-protein conjugates containing PnPS fragments of preselected sizes and differing in the degree of substitution. The PS14TT and PS23FTT conjugate vaccine candidates were characterized chemically and their immunogenicity was evaluated in rabbits and mice. All PnPS conjugate vaccines, unlike the corresponding plain polysaccharides, produced high IgG titres in both animal species. The PS14TT conjugates tended to be more immunogenic than the PS23FTT conjugates. The immune response to the PS14TT conjugates, but not to the PS23FTT conjugates, was related to the size of the conjugated polysaccharide hapten. Both types of conjugates elicited strong booster effects upon secondary immunizations, resulting in high IgG1, IgG2a and IgG2b titres.
Collapse
MESH Headings
- Acetylation
- Adjuvants, Immunologic/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Animals
- Antibodies, Bacterial/biosynthesis
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/chemistry
- Bacterial Capsules/administration & dosage
- Bacterial Capsules/chemistry
- Bacteriological Techniques
- Female
- Haptens/chemistry
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/classification
- Immunoglobulin M/biosynthesis
- Injections, Intralymphatic
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Rabbits
- Sulfhydryl Compounds/chemistry
- Tetanus Toxoid/metabolism
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/chemistry
Collapse
Affiliation(s)
- A Pawlowski
- Swedish Institute for Infectious Disease Control, SE-17182, Solna, Sweden
| | | | | |
Collapse
|
18
|
|
19
|
Muñoz R, López R, de Frutos M, García E. First molecular characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Mol Microbiol 1999; 31:703-13. [PMID: 10027985 DOI: 10.1046/j.1365-2958.1999.01211.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine diphosphate galacturonate 4-epimerases (UDPGLEs) are enzymes that convert UDP-glucuronate into UDP-galacturonate. Although the presence of UDPGLEs has been reported in prokaryoic and eukaryotic organisms, the genes coding for these enzymes are completely unknown. The galacturonic acid-containing capsular polysaccharide of Streptococcus pneumoniae type 1 is synthesized through the action of a specific UDPGLE. We have constructed a defined deletion mutant in the cap1J gene (one of the 15 cap1 genes responsible for the synthesis of the type 1 capsule) that exhibited an unencapsulated phenotype. This mutant was unable to synthesize UDPGLE, suggesting that Cap1J was the type 1-specific UDPGLE of S. pneumoniae. Escherichia coli cells harbouring the recombinant plasmid pRMM38 (cap1J) overproduced a 40 kDa protein, characterized as Cap1J on the basis of the N-terminal amino acid sequence analysis, and expressed high levels of enzymatically active Cap1J epimerase. Cap1J was partially purified, although purification to electrophoretic homogeneity inactivated the enzyme irreversibly. The enzyme has the following characteristics: K(m) for UDP-glucuronate, 0.24 mM; pH optimum, 7.5; equilibrium constant (in the direction of UDP-galacturonate formation), 1.3; and an approximate M(r) of 80,000 for the active form. The Cap1J protein exhibited a fluorescence emission spectrum similar to that of NADH. Upon inactivation with p-hydroxymercuribenzoate, the addition of NAD+ and 2-mercaptoethanol were sufficient to reactivate the enzyme. Among several compounds tested, UDP-galactose and UDP-xylose exhibited the highest inhibition of the UDPGLE activity. Inactivation of UDPGLE activity was also observed in the presence of UMP and several reducing sugars. To our knowledge, this is the first example of a thoroughly molecular characterization of a UDPGLE.
Collapse
Affiliation(s)
- R Muñoz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 1998; 27:73-83. [PMID: 9466257 DOI: 10.1046/j.1365-2958.1998.00658.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotype 19F variants of the major Spanish multiresistant serotype 23F clone of Streptococcus pneumoniae have been proposed to have arisen by recombinational exchanges at the capsular biosynthetic locus. Members of the Spanish multiresistant serotype 23F clone and the serotype 19F variants were confirmed to be essentially identical in overall genotype, as they were indistinguishable by REP-PCR, and had identical sequences at three polymorphic housekeeping genes. Eight serotype 19F variants were studied and all had large recombinational replacements at the capsular biosynthetic locus. In all cases, one of the recombinational cross-over points appeared to be upstream of dexB, which flanks one end of the capsular locus, and in six of the variants the other cross-over point was downstream of aliA, which flanks the other end of the locus. In two strains a recombinational cross-over point between the introduced serotype 19F capsular region and that of the Spanish serotype 23F clone could be clearly identified, within cpsN in one strain and within cpsM in the other. The differences in the recombinational junctions and sequence polymorphisms within the introduced capsular genes, suggested that the eight serotype 19F variants emerged on at least four separate occasions. Changes in capsular type by recombination may therefore be relatively frequent in pneumococci and this has implications for the long-term efficacy of conjugate pneumococcal vaccines that will protect against only a limited number of serotypes.
Collapse
MESH Headings
- Base Sequence
- Crossing Over, Genetic
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- Drug Resistance, Multiple/physiology
- Molecular Sequence Data
- Phenotype
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Polysaccharides, Bacterial/biosynthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/genetics
- Recombination, Genetic/physiology
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Serotyping
- Spain
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/classification
- Streptococcus pneumoniae/genetics
Collapse
Affiliation(s)
- T J Coffey
- Molecular Microbiology Group, School of Biological Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | | | | | | |
Collapse
|