1
|
Svenson EL, Coonen J, Svenson JE, Simmons HA, Hayes JM, Capuano S. An Epidemiologic Study of Bacterial Culture and Antibiotic Susceptibility Analyses in Captive Macaques and Marmosets at the Wisconsin National Primate Research Center. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63. [PMID: 38649259 PMCID: PMC11467885 DOI: 10.30802/aalas-jaalas-23-000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 04/25/2024]
Abstract
Antimicrobial resistance (AMR) represents a growing public health threat that arises at the interface between animal, human, and environmental health. Although the pathways promoting the development of AMR are well characterized in human health settings, data within the veterinary medical world are less abundant, particularly from fields focusing on nontraditional species, such as nonhuman primates (NHPs). The purpose of this study was to describe trends in sample submission for bacterial culture, characterize patterns of microbial growth and any changes in AMR and susceptibility over time, and inform best practices for veterinary antimicrobial stewardship in a captively-housed, indoor NHP colony. Electronic health records from the Wisconsin National Primate Research Center were analyzed across a 10-y period using SAS Studio. There was an increasing pattern of sample submissions for culture and susceptibility analyses, with no corresponding increases in resistance to relevant antibiotics for potential zoonotic pathogens, such as Escherichia coli or Shigella species. Trends are suggestive of appropriate antimicrobial stewardship practices that were responsive to the medical needs of Wisconsin National Primate Research Center animals, as well as the needs of the larger research community at the University of Wisconsin-Madison. These findings can inform veterinary professionals working with NHPs and contribute to the growing body of literature surrounding AMR in nontraditional species.
Collapse
Affiliation(s)
- Emma L Svenson
- Department of Population Health Sciences, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| | - James E Svenson
- Department of Emergency Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | | | - Jennifer M Hayes
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| |
Collapse
|
2
|
Bapna M, Maurer J, Ruddy S, Karnik K, Turett G, Urban C, Yoon J, Prasad N, Yung L, Lang S, Mack C, Volodarskiy A, Aksenov S, Segal-Maurer S. A case of Lactobacillus jensenii associated native valve endocarditis. IDCases 2023; 32:e01806. [PMID: 37250380 PMCID: PMC10209695 DOI: 10.1016/j.idcr.2023.e01806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Lactobacillus jensenii is rarely reported as a cause of endocarditis in immunocompetent patients. We describe a case of Lactobacillus jensenii associated native valve endocarditis that was identified using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) technology. While most Lactobacillus species are generally resistant to vancomycin, Lactobacillus jensenii is frequently susceptible, but treatment requires accurate susceptibility results followed by timely medical and surgical intervention. Probiotic use in patients can be a risk factor for infection with Lactobacillus species.
Collapse
Affiliation(s)
- Monica Bapna
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
| | - Jaslyn Maurer
- Department of Medicine, NewYork Presbyterian Queens, Flushing, New York, USA
| | - Samantha Ruddy
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
| | - Krupa Karnik
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
| | - Glenn Turett
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
| | - Carl Urban
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - James Yoon
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Nishant Prasad
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Lok Yung
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Samuel Lang
- Department of Cardiothoracic Surgery, NewYork-Presbyterian Queens, Flushing, New York, USA
- Weill Cornell Medical College, Department of Cardiothoracic Surgery, Cornell University, New York, USA
| | - Charles Mack
- Department of Cardiothoracic Surgery, NewYork-Presbyterian Queens, Flushing, New York, USA
- Weill Cornell Medical College, Department of Cardiothoracic Surgery, Cornell University, New York, USA
| | - Alexander Volodarskiy
- Department of Medicine, NewYork Presbyterian Queens, Flushing, New York, USA
- Division of Cardiology, NewYork-Presbyterian Queens, Flushing, New York, USA
| | - Sergei Aksenov
- Department of Pathology, NewYork-Presbyterian Queens, Flushing, New York, USA
| | - Sorana Segal-Maurer
- The Dr. James J. Rahal Jr. Division of Infectious Diseases, NewYork-Presbyterian Queens, Flushing, NY, USA
- Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
3
|
Lin X, Yang S, Gong Z, Ni R, Shi X, Song L. Viral community in landfill leachate: Occurrence, bacterial hosts, mediation antibiotic resistance gene dissemination, and function in municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158561. [PMID: 36087678 DOI: 10.1016/j.scitotenv.2022.158561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A municipal solid waste (MSW) landfill is a significant source of antibiotic resistance, pathogens and viruses and also a habitat for microbial consortia that perform MSW decomposition. Viruses are of great significance in ecological interactions such as MSW decomposition and antibiotic resistance gene (ARG) transmission. In this study, the viral community structure and the associated driver, the linkage of viruses and their bacterial hosts, the virus-associated ARG dissemination and virtual community function on MSW decomposition were investigated in landfill leachate from seven cities, China. The seven cities include four megacities, two large-scale cities and one small-scale city, representing the leachate characters of China. The results showed that the leachates were dominated by the phage families Siphoviridae, Myoviridae and Podoviridae (91.7 ± 3.6) %. Their putative hosts were the important MSW decomposers Lactobacillus, Pseudomonas, Clostridium, Proteiniphilum, and Bacteroides. The structure of the viral community was significantly affected by pH (P = 0.007, analyzed by RDA) and the bacterial community (R = 0.83, P < 0.001, analyzed by Mantel test). The relative abundance of ARGs showed a strong correlation (R > 0.8, P < 0.01) with viral family, suggesting that viruses play an important role in ARGs dissemination. Phage regulate bacterial population abundance through top-down effects, thus participating in MSW decomposition. These results demonstrate that viral community are involve in ARGs transmission and dissemination and mediate MSW decomposition in landfill.
Collapse
Affiliation(s)
- Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
4
|
Severgnini M, Camboni T, Ceccarani C, Morselli S, Cantiani A, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. Distribution of ermB, ermF, tet(W), and tet(M) Resistance Genes in the Vaginal Ecosystem of Women during Pregnancy and Puerperium. Pathogens 2021; 10:pathogens10121546. [PMID: 34959501 PMCID: PMC8705968 DOI: 10.3390/pathogens10121546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
The inhabitants of the vaginal ecosystem can harbor genetic determinants conferring antimicrobial resistance. However, detailed data about the distribution of resistance genes in the vaginal microbiome of pregnant women are still lacking. Therefore, we assessed the presence of macrolide (i.e., erm genes) and tetracycline (i.e., tet genes) resistance markers in the vaginal environment of Caucasian women at different gestational ages. Furthermore, the detection of resistance genes was related to the composition of the vaginal microbiota. A total of 228 vaginal samples, collected at different trimesters of pregnancy or during the puerperium, were tested for the presence of ermB, ermF, tet(W), and tet(M) by in-house end-point PCR assays. The composition of the vaginal microbiota was assessed through a microscopic evaluation (i.e., Nugent score) and by means of sequencing V3–V4 hypervariable regions of the bacterial 16 rRNA gene. Overall, the most detected resistance gene was tet(M) (76.7%), followed by ermB (55.2%). In 17% of women, mainly with a ‘normal’ vaginal microbiota, no resistance genes were found. Except for tet(W), a significant correlation between the positivity of resistance genes and a dysbiotic vaginal status (i.e., bacterial vaginosis (BV)) was noticed. Indeed, samples positive for at least one resistance determinant were characterized by a decrease in Lactobacillus spp. and an increase of BV-related genera (Prevotella, Gardnerella, Atopobium, Sneathia). A high predominance of vaginal Lactobacillus spp. (>85%) was associated with a lower risk of tet(W) gene detection, whereas the presence of Megasphaera (>1%) increased the risk of positivity for all analyzed genes. Different types of vaginal microbiota are associated with peculiar resistance profiles, being a lactobacilli-dominated ecosystem poor in or free of resistance genes. These data could open new perspectives for promoting maternal and neonatal health.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Alessia Cantiani
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Sara Zagonari
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | - Giulia Patuelli
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47023 Cesena, Italy;
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Correspondence: ; Tel.: +39-0512144513
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| |
Collapse
|
5
|
Wang J, Wang J, Zhao Z, Chen J, Lu H, Liu G, Zhou J, Guan X. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1145-1152. [PMID: 28886881 DOI: 10.1016/j.envpol.2017.07.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 05/11/2023]
Abstract
Antibiotic resistance genes (ARGs) have been regarded as emerging contaminants and have attracted growing attention owing to their widespread presence in the environment. In addition to the well-documented selective pressure of antibiotics, ARGs have also become prevalent because of anthropogenic impacts. Coastal habitats are located between terrestrial and marine ecosystems, which are a hotspot for anthropogenic impacts. Excessive accumulation of polycyclic aromatic hydrocarbons (PAHs) has posed a serious threat to coastal habitats, but no information is available on the effect of PAHs on antibiotic resistance in the microbial community of coastal environments. In this study, the effect of two typical PAHs, naphthalene and phenanthrene, on antibiotic resistance propagation was investigated in a coastal microbial community. The results indicated that the presence of 100 mg/L of naphthalene or 10 mg/L of phenanthrene significantly enhanced the abundance of class I integrase gene (intI1), sulfanilamide resistance gene (sulI), and aminoglycosides resistance gene (aadA2) in the microbial community. Horizontal gene transfer experiment demonstrated that increased abundance of ARGs was primarily a result of conjugative transfer mediated by class I integrons. These findings provided direct evidence that coastal microbial community exposed to PAHs might have resulted in the dissemination of ARGs and implied that a more comprehensive risk assessment of PAHs to natural ecosystems and public health is necessary.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zelong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyan Guan
- Key Lab of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| |
Collapse
|
6
|
Schlabritz-Loutsevitch N, Gygax SE, Dick E, Smith WL, Snider C, Hubbard G, Ventolini G. Vaginal Dysbiosis from an Evolutionary Perspective. Sci Rep 2016; 6:26817. [PMID: 27226349 PMCID: PMC4880931 DOI: 10.1038/srep26817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
Evolutionary approaches are powerful tools for understanding human disorders. The composition of vaginal microbiome is important for reproductive success and has not yet been characterized in the contexts of social structure and vaginal pathology in non-human primates (NHPs). We investigated vaginal size, vulvovaginal pathology and the presence of the main human subtypes of Lactobacillus spp./ BV-related species in the vaginal microflora of baboons (Papio spp.). We performed morphometric measurements of external and internal genitalia (group I, n = 47), analyzed pathology records of animals from 1999–2015 (group II, n = 64 from a total of 12,776), and evaluated vaginal swabs using polymerase chain reaction (PCR) (group III, n = 14). A total of 68 lesions were identified in 64 baboons. Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae, Megasphaera I, and Megasphaera II were not detected. L. jensenii, L. crispatus, and L. gasseri were detected in 2/14 (14.2%), 1/14 (7.1%), and 1/14 (7.1%) samples, respectively. BVAB2 was detected in 5/14 (35.7%) samples. The differences in the vaginal milieu between NHP and humans might be the factor associated with human-specific pattern of placental development and should be taken in consideration in NHP models of human pharmacology and microbiology.
Collapse
Affiliation(s)
| | - Scott E Gygax
- Femeris Women's Health Research Center, Genesis Biotechnology Group - Hamilton, New Jersey, USA
| | - Edward Dick
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - William L Smith
- Femeris Women's Health Research Center, Genesis Biotechnology Group - Hamilton, New Jersey, USA
| | - Cathy Snider
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Gene Hubbard
- University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Gary Ventolini
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, Texas, USA
| |
Collapse
|
7
|
Amábile-Cuevas CF. Antibiotic resistance: from Darwin to Lederberg to Keynes. Microb Drug Resist 2012; 19:73-87. [PMID: 23046150 DOI: 10.1089/mdr.2012.0115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.
Collapse
|
8
|
Martiny AC, Martiny JBH, Weihe C, Field A, Ellis JC. Functional metagenomics reveals previously unrecognized diversity of antibiotic resistance genes in gulls. Front Microbiol 2011; 2:238. [PMID: 22347872 PMCID: PMC3275322 DOI: 10.3389/fmicb.2011.00238] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/11/2011] [Indexed: 11/17/2022] Open
Abstract
Wildlife may facilitate the spread of antibiotic resistance (AR) between human-dominated habitats and the surrounding environment. Here, we use functional metagenomics to survey the diversity and genomic context of AR genes in gulls. Using this approach, we found a variety of AR genes not previously detected in gulls and wildlife, including class A and C β-lactamases as well as six tetracycline resistance gene types. An analysis of the flanking sequences indicates that most of these genes are present in Enterobacteriaceae and various Gram-positive bacteria. In addition to finding known gene types, we detected 31 previously undescribed AR genes. These undescribed genes include one most similar to an uncharacterized gene in Verrucomicrobium and another to a putative DNA repair protein in Lactobacillus. Overall, the study more than doubled the number of clinically relevant AR gene types known to be carried by gulls or by wildlife in general. Together with the propensity of gulls to visit human-dominated habitats, this high diversity of AR gene types suggests that gulls could facilitate the spread of AR.
Collapse
Affiliation(s)
- Adam C Martiny
- Department of Earth System Science, University of California Irvine, CA, USA
| | | | | | | | | |
Collapse
|