1
|
Huang LD, Gou XY, Yang MJ, Li MJ, Chen SN, Yan J, Liu XX, Sun AH. Peptidoglycan biosynthesis-associated enzymatic kinetic characteristics and β-lactam antibiotic inhibitory effects of different Streptococcus pneumoniae penicillin-binding proteins. Int J Biol Macromol 2024; 254:127784. [PMID: 37949278 DOI: 10.1016/j.ijbiomac.2023.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different β-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang 322000, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; The First Hospital of Putian City, Putian, Fujian 351100, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Jie Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xiao-Xiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
2
|
McDougall S, Clausen L, Ha HJ, Gibson I, Bryan M, Hadjirin N, Lay E, Raisen C, Ba X, Restif O, Parkhill J, Holmes MA. Mechanisms of β-lactam resistance of Streptococcus uberis isolated from bovine mastitis cases. Vet Microbiol 2020; 242:108592. [PMID: 32122596 DOI: 10.1016/j.vetmic.2020.108592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
A number of veterinary clinical pathology laboratories in New Zealand have been reporting emergence of increased minimum in inhibitory concentrations for β-lactams in the common clinical bovine mastitis pathogen Streptococcus uberis. The objective of this study was to determine the genetic basis of this increase in MIC for β-lactams amongst S. uberis. Illumina sequencing and determination of oxacillin MIC was performed on 265 clinical isolates. Published sequences of the five penicillin binding proteins pbp1a, pbp1b, pbp2a, pbp2b, and pbp2x were used to identify, extract and align these sequences from the study isolates. Amino acid substitutions resulting from single nucleotide polymorphisms (SNP) within these genes were analysed for associations with elevated (≥ 0.5 mg/L) oxacillin MIC together with a genome wide association study. The population structure of the study isolates was approximated using a phylogenetic tree generated from an alignment of the core genome. A total of 53 % of isolates had MIC ≥ 0.5 mg/L for oxacillin. A total of 101 substitutions within the five pbp were identified, of which 11 were statistically associated with an MIC ≥ 0.5 mg/L. All 140 isolates which exhibited an increased β-lactam MIC had SNPs leading to pbp2x E381K and Q554E substitutions. The phylogenetic tree indicated that the genotype and phenotype associated with the increased MIC for oxacillin were present in several different lineages suggesting that acquisition of this increased β-lactam MIC had occurred in multiple geographically distinct regions. Reanalysis of the data from the intervention studies from which the isolates were originally drawn found a tendency for the pbp2x E381K substitution to be associated with lower cure rates. It is concluded that there is geographically and genetically widespread presence of pbp substitutions associated with reduced susceptibility to β-lactam antimicrobials. Additionally, presence of pbp substitutions tended to be associated with poorer cure rate outcomes following antimicrobial therapy for clinical mastitis.
Collapse
Affiliation(s)
| | | | - Hye-Jeong Ha
- Animal Health Laboratory, Ministry for Primary Industry, Upper Hutt, New Zealand
| | - Isobel Gibson
- New Zealand Veterinary Pathology, Hamilton, New Zealand
| | | | - Nazreen Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Elizabeth Lay
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Claire Raisen
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
3
|
Slager J, Aprianto R, Veening JW. Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39. Nucleic Acids Res 2019; 46:9971-9989. [PMID: 30107613 PMCID: PMC6212727 DOI: 10.1093/nar/gky725] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary transcripts by Cappable-Seq, we mapped 1015 transcriptional start sites and 748 termination sites. We show that the pneumococcal transcriptional landscape is complex and includes many secondary, antisense and internal promoters. Using this new genomic map, we identified several new small RNAs (sRNAs), RNA switches (including sixteen previously misidentified as sRNAs), and antisense RNAs. In total, we annotated 89 new protein-encoding genes, 34 sRNAs and 165 pseudogenes, bringing the S. pneumoniae D39 repertoire to 2146 genetic elements. We report operon structures and observed that 9% of operons are leaderless. The genome data are accessible in an online resource called PneumoBrowse (https://veeninglab.com/pneumobrowse) providing one of the most complete inventories of a bacterial genome to date. PneumoBrowse will accelerate pneumococcal research and the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Rieza Aprianto
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|