1
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
2
|
Sacristán-Soriano O, Jarma D, Sánchez MI, Romero N, Alonso E, Green AJ, Sànchez-Melsió A, Hortas F, Balcázar JL, Peralta-Sánchez JM, Borrego CM. Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169946. [PMID: 38199372 DOI: 10.1016/j.scitotenv.2024.169946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Waterbirds are vectors for the dissemination of antimicrobial resistance across environments, with some species increasingly reliant on highly anthropized habitats for feeding. However, data on the impact of their feeding habits on the carriage of antibiotic resistance genes (ARGs) are still scarce. To fill this gap, we examined the microbiota (16S rRNA amplicon gene sequencing) and the prevalence of ARG (high-throughput qPCR of 47 genes) in faeces from white storks (Ciconia ciconia) and lesser black-backed gulls (Larus fuscus) feeding in highly (landfill) and less (paddy fields) polluted habitats. Faecal bacterial richness and diversity were higher in gulls feeding upon landfills and showed a greater abundance of potential pathogens, such as Staphylococcus. In contrast, faecal bacterial communities from storks were similar regardless of habitat preferences, maybe due to a less intense habitat use compared to gulls. In addition, birds feeding in the landfill carried a higher burden of ARGs compared to the surrounding soil and surface waters. Network analysis revealed strong correlations between ARGs and potential pathogens, particularly between tetM (resistance to tetracyclines), blaCMY (beta-lactam resistance), sul1 (sulfonamide resistance) and members of the genera Streptococcus, Peptostreptococcus, and Peptoclostridium. Our work demonstrates how transitioning from paddy fields to landfills fosters the carriage of ARGs and potential pathogens in the bird gut, shedding light on the ecological role of these avian vectors in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
| | - Dayana Jarma
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Marta I Sánchez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Noelia Romero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Sevilla, Spain
| | - Andy J Green
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain
| | - José Luis Balcázar
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain
| |
Collapse
|
3
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
4
|
Ahlstrom CA, Woksepp H, Sandegren L, Ramey AM, Bonnedahl J. Exchange of Carbapenem-Resistant Escherichia coli Sequence Type 38 Intercontinentally and among Wild Bird, Human, and Environmental Niches. Appl Environ Microbiol 2023; 89:e0031923. [PMID: 37195171 PMCID: PMC10304903 DOI: 10.1128/aem.00319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a global threat to human health and are increasingly being isolated from nonclinical settings. OXA-48-producing Escherichia coli sequence type 38 (ST38) is the most frequently reported CRE type in wild birds and has been detected in gulls or storks in North America, Europe, Asia, and Africa. The epidemiology and evolution of CRE in wildlife and human niches, however, remains unclear. We compared wild bird origin E. coli ST38 genome sequences generated by our research group and publicly available genomic data derived from other hosts and environments to (i) understand the frequency of intercontinental dispersal of E. coli ST38 clones isolated from wild birds, (ii) more thoroughly measure the genomic relatedness of carbapenem-resistant isolates from gulls sampled in Turkey and Alaska, USA, using long-read whole-genome sequencing and assess the spatial dissemination of this clone among different hosts, and (iii) determine whether ST38 isolates from humans, environmental water, and wild birds have different core or accessory genomes (e.g., antimicrobial resistance genes, virulence genes, plasmids) which might elucidate bacterial or gene exchange among niches. Our results suggest that E. coli ST38 strains, including those resistant to carbapenems, are exchanged between humans and wild birds, rather than separately maintained populations within each niche. Furthermore, despite close genetic similarity among OXA-48-producing E. coli ST38 clones from gulls in Alaska and Turkey, intercontinental dispersal of ST38 clones among wild birds is uncommon. Interventions to mitigate the dissemination of antimicrobial resistance throughout the environment (e.g., as exemplified by the acquisition of carbapenem resistance by birds) may be warranted. IMPORTANCE Carbapenem-resistant bacteria are a threat to public health globally and have been found in the environment as well as the clinic. Some bacterial clones are associated with carbapenem resistance genes, such as Escherichia coli sequence type 38 (ST38) and the carbapenemase gene blaOXA-48. This is the most frequently reported carbapenem-resistant clone in wild birds, though it was unclear if it circulated within wild bird populations or was exchanged among other niches. The results from this study suggest that E. coli ST38 strains, including those resistant to carbapenems, are frequently exchanged among wild birds, humans, and the environment. Carbapenem-resistant E. coli ST38 clones in wild birds are likely acquired from the local environment and do not constitute an independent dissemination pathway within wild bird populations. Management actions aimed at preventing the environmental dissemination and acquisition of antimicrobial resistance by wild birds may be warranted.
Collapse
Affiliation(s)
| | - Hanna Woksepp
- Department of Research, Kalmar County Region, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Infection Biology, Antimicrobial Resistance and Immunology, Uppsala University, Uppsala, Sweden
| | - Andrew M. Ramey
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Region, Kalmar, Sweden
| |
Collapse
|
5
|
Martín-Maldonado B, Rodríguez-Alcázar P, Fernández-Novo A, González F, Pastor N, López I, Suárez L, Moraleda V, Aranaz A. Urban Birds as Antimicrobial Resistance Sentinels: White Storks Showed Higher Multidrug-Resistant Escherichia coli Levels Than Seagulls in Central Spain. Animals (Basel) 2022; 12:2714. [PMID: 36230455 PMCID: PMC9558531 DOI: 10.3390/ani12192714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
The presence of AMR bacteria in the human-animal-environmental interface is a clear example of the One Health medicine. Several studies evidence the presence of resistant bacteria in wildlife, which can be used as a good indicator of anthropization level on the ecosystem. The fast increase in AMR in the environment in the last decade has been led by several factors as globalization and migration. Migratory birds can travel hundreds of kilometers and disseminate pathogens and AMR through different regions or even continents. The aim of this study was to compare the level of AMR in three migratory bird species: Ciconia ciconia, Larus fuscus and Chroicocephalus ridibundus. For this purpose, commensal Escherichia coli has been considered a useful indicator for AMR studies. After E. coli isolation from individual cloacal swabs, antimicrobial susceptibility tests were performed by the disk-diffusion method, including 17 different antibiotics. A total of 63.2% of gulls had resistant strains, in contrast to 31.6% of white storks. Out of all the resistant strains, 38.9% were considered multi-drug resistant (50% of white storks and 30% of seagulls). The antibiotic classes with the highest rate of AMR were betalactamics, quinolones and tetracyclines, the most commonly used antibiotic in human and veterinary medicine in Spain.
Collapse
Affiliation(s)
- Bárbara Martín-Maldonado
- Deparment of Veterinary Medicine, School Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Pablo Rodríguez-Alcázar
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Department Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aitor Fernández-Novo
- Deparment of Veterinary Medicine, School Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Fernando González
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Natalia Pastor
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Irene López
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Laura Suárez
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Virginia Moraleda
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Alicia Aranaz
- Department Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Cherak Z, Loucif L, Bendjama E, Moussi A, Benbouza A, Grainat N, Rolain JM. Dissemination of Carbapenemases and MCR-1 Producing Gram-Negative Bacteria in Aquatic Environments in Batna, Algeria. Antibiotics (Basel) 2022; 11:antibiotics11101314. [PMID: 36289972 PMCID: PMC9598638 DOI: 10.3390/antibiotics11101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Antibiotic-resistant-bacteria are being considered as emerging environmental contaminants where the importance of the surrounding environment in their emergence and dissemination has been emphasized. The aim of this study was to screen for the presence and diversity of carbapenem- and colistin-resistant Gram-negative bacteria (GNBs) in different aquatic environments. Water samples were collected in Batna, Algeria. Carbapenem- and colistin-resistant GNBs were selectively isolated and then identified using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. After phenotypic antibiotic susceptibility testing, the molecular mechanisms of β-lactams and colistin-resistance were investigated by PCR and sequencing. The clonality of mcr-1 positive Escherichia coli was determined by multi-locus sequence typing. We noticed a high level of resistance in both tap water and wastewater. The most commonly found carbapenem-resistance mechanism was the OXA-48 enzyme, but other carbapenemases were also detected. In addition, the mcr-1 gene was detected in 18 E. coli of different sequence types. Our findings highlight the role of aquatic environments in the dissemination of resistant-bacteria, especially considering that water is a connecting medium between different ecological systems and can easily transmit resistant-bacteria and promote horizontal gene transfer. Thus, the development of effective treatment strategies for eliminating antibiotic-resistance is seriously needed.
Collapse
Affiliation(s)
- Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna 05078, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna 05078, Algeria
- Correspondence: ; Tel.: +213-(0)5-40-92-54-00
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna 05078, Algeria
- Départements de Technologie Alimentaire, Instituts des Sciences Agronomiques et Vétérinaires, Université El Hadj Lakhdar-Batna 1, Batna 05000, Algeria
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bioressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra 07000, Algeria
| | - Amel Benbouza
- Faculté de Médecine, Université de Batna 2, Batna 05078, Algeria
| | - Nadia Grainat
- Faculté de Médecine, Université de Batna 2, Batna 05078, Algeria
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix Marseille Université, IRD, MEPHI, 13007 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| |
Collapse
|
7
|
Athanasakopoulou Z, Diezel C, Braun SD, Sofia M, Giannakopoulos A, Monecke S, Gary D, Krähmer D, Chatzopoulos DC, Touloudi A, Birtsas P, Palli M, Georgakopoulos G, Spyrou V, Petinaki E, Ehricht R, Billinis C. Occurrence and Characteristics of ESBL- and Carbapenemase- Producing Escherichia coli from Wild and Feral Birds in Greece. Microorganisms 2022; 10:1217. [PMID: 35744734 PMCID: PMC9227375 DOI: 10.3390/microorganisms10061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wild and feral birds are known to be involved in the maintenance and dissemination of clinically-important antimicrobial-resistant pathogens, such as extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae. The aim of our study was to evaluate the presence of ESBL- and carbapenemase-producing Escherichia coli among wild and feral birds from Greece and to describe their antimicrobial resistance characteristics. In this context, fecal samples of 362 birds were collected and cultured. Subsequently, the antimicrobial resistance pheno- and geno-type of all the obtained E. coli isolates were determined. A total of 12 multidrug-resistant (MDR), ESBL-producing E. coli were recovered from eight different wild bird species. Eleven of these isolates carried a blaCTX-M-1 group gene alone or in combination with blaTEM and one carried only blaTEM. AmpC, fluoroquinolone, trimethoprim/sulfamethoxazole, aminoglycoside and macrolide resistance genes were also detected. Additionally, one carbapenemase-producing E. coli was identified, harboring blaNDM along with a combination of additional resistance genes. This report describes the occurrence of ESBL- and carbapenemase-producing E. coli among wild avian species in Greece, emphasizing the importance of incorporating wild birds in the assessment of AMR circulation in non-clinical settings.
Collapse
Affiliation(s)
- Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Domenique Krähmer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | | | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | | | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, 07745 Jena, Germany
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
8
|
Ahlstrom CA, Woksepp H, Sandegren L, Mohsin M, Hasan B, Muzyka D, Hernandez J, Aguirre F, Tok A, Söderman J, Olsen B, Ramey AM, Bonnedahl J. Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153632. [PMID: 35124031 DOI: 10.1016/j.scitotenv.2022.153632] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbapenem resistant Enterobacteriaceae (CRE) are a threat to public health globally, yet the role of the environment in the epidemiology of CRE remains elusive. Given that wild birds can acquire CRE, likely from foraging in anthropogenically impacted areas, and may aid in the maintenance and dissemination of CRE in the environment, a spatiotemporal comparison of isolates from different regions and timepoints may be useful for elucidating epidemiological information. Thus, we characterized the genomic diversity of CRE from fecal samples opportunistically collected from gulls (Larus spp.) inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black kites (Milvus migrans) sampled in Pakistan and assessed evidence for spatiotemporal patterns of dissemination. Within and among sampling locations, a high diversity of carbapenemases was found, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-beta-lactamase (NDM), oxacillinase (OXA), and Verona integron Metallo beta-lactamase (VIM). Although the majority of genomic comparisons among samples did not provide evidence for spatial dissemination, we did find strong evidence for dissemination among Alaska, Spain, and Turkey. We also found strong evidence for temporal dissemination among samples collected in Alaska and Pakistan, though the majority of CRE clones were transitory and were not repeatedly detected among locations where samples were collected longitudinally. Carbapenemase-producing hypervirulent K. pneumoniae was isolated from gulls in Spain and Ukraine and some isolates harbored antimicrobial resistance genes conferring resistance to up to 10 different antibiotic classes, including colistin. Our results are consistent with local acquisition of CRE by wild birds with spatial dissemination influenced by intermediary transmission routes, likely involving humans. Furthermore, our results support the premise that anthropogenically-associated wild birds may be good sentinels for understanding the burden of clinically-relevant antimicrobial resistance in the local human population.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, Kalmar 391 85, Sweden; Department of Medicine and Optometry, Linnaeus University, Kalmar 391 85, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden; Animal Bacteriology Section, Microbial Sciences, Pests and Diseases, Agriculture Victoria Research, Bundoora, Victoria 3083, Australia
| | - Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv 61023, Ukraine
| | - Jorge Hernandez
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Filip Aguirre
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Atalay Tok
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Jan Söderman
- Laboratory Medicine, Jönköping, Region Jönköping County, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bjorn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Department of Infectious Diseases, Region Kalmar County, Kalmar 391 85, Sweden.
| |
Collapse
|
9
|
Abderrahim A, Djahmi N, Loucif L, Nedjai S, Chelaghma W, Gameci-Kirane D, Dekhil M, Lavigne JP, Pantel A. Dissemination of OXA-48- and NDM-1-Producing Enterobacterales Isolates in an Algerian Hospital. Antibiotics (Basel) 2022; 11:antibiotics11060750. [PMID: 35740155 PMCID: PMC9220339 DOI: 10.3390/antibiotics11060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multidrug-resistant (MDR) Enterobacterales remain an increasing problem in Algeria, notably due to the emergence of carbapenemase producers. We investigated the molecular characteristics of carbapenem-resistant Enterobacterales isolates recovered from outpatients and inpatients in Eastern Algeria. Non-repetitive Enterobacterales with reduced susceptibility to carbapenems were consecutively collected from clinical specimens in Annaba University Hospital (Algeria) between April 2016 and December 2018. Isolates were characterized with regard to antibiotic resistance, resistome and virulome content, clonality, and plasmid support. Of the 168 isolates analyzed, 29 (17.3%) were carbapenemase producers and identified as K. pneumoniae (n = 23), E. coli (n = 5), and E. cloacae (n = 1). blaOXA-48 was the most prevalent carbapenemase-encoding gene (n = 26/29), followed by blaNDM-1 gene (n = 3/29). K. pneumoniae isolates harbored some virulence traits (entB, ugeF, ureA, mrkD, fimH), whereas E. coli had a commensal origin (E, A, and B1). Clonality analysis revealed clonal expansions of ST101 K. pneumoniae and ST758 E. coli. Plasmid analysis showed a large diversity of incompatibility groups, with a predominance of IncM (n = 26, 89.7%). A global dissemination of OXA-48-producing Enterobacterales in the Algerian hospital but also the detection of NDM-1-producing E. coli in community settings were observed. The importance of this diffusion must be absolutely investigated and controlled.
Collapse
Affiliation(s)
- Amel Abderrahim
- Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar Annaba, Annaba 23000, Algeria; (A.A.); (D.G.-K.)
| | - Nassima Djahmi
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna 05000, Algeria;
| | - Sabrina Nedjai
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Widad Chelaghma
- Laboratoire de Microbiologie Appliquée à l’Agroalimentaire au Biomédical et à l’Environnement, Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria;
| | - Djamila Gameci-Kirane
- Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar Annaba, Annaba 23000, Algeria; (A.A.); (D.G.-K.)
| | - Mazouz Dekhil
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba 23000, Algeria; (N.D.); (S.N.); (M.D.)
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France;
- Correspondence: ; Tel.: +33-466-683-202
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France;
| |
Collapse
|
10
|
Loucif L, Chelaghma W, Bendjama E, Cherak Z, Khellaf M, Khemri A, Rolain JM. Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms 2022; 10:microorganisms10050975. [PMID: 35630419 PMCID: PMC9143000 DOI: 10.3390/microorganisms10050975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence and spread of β-lactams and colistin-resistant Escherichia coli in birds deserve a special concern worldwide. This study aimed to investigate the presence of β-lactams and colistin-resistant Escherichia coli strains isolated from the faeces of urban and rural pigeons in Batna, Algeria, and to characterise their molecular traits of resistance. Between March and April 2019, a total of 276 faecal droppings samples were collected in Batna, Algeria. Samples were subjected to selective isolation of β-lactams and colistin-resistant Escherichia coli. The representative colonies were then identified using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility testing was performed using the disc diffusion method. β-lactamases, as well as mcr genes, were screened for by PCR and confirmed by sequencing. Genetic relatedness of the mcr-positive E. coli strains was determined using multi-locus sequence typing analysis. Transferability features of carbapenemase genes were assessed by conjugation experiments. Overall, thirty-five E. coli isolates were obtained only from urban pigeon samples. All carbapenem-resistant isolates harboured the blaOXA-48 gene as the only carbapenemase gene detected (n = 11), while blaESBL genes were detected in eighteen isolates. Out of the thirty-five isolates, four E. coli isolates were positive for the mcr-1 gene. The obtained mcr-1 positive E. coli isolates belonged to four STs, including ST1485, ST224, ST46, and a new ST. This study is the first to report the isolation of E. coli strains carrying the mcr-1 gene from pigeon faeces in Algeria and also the first to report the detection of blaOXA-48-positive E. coli in pigeons. Close surveillance is, therefore, urgently needed to monitor the dissemination of blaOXA-48 and mcr-1 producing E. coli strains in wildlife.
Collapse
Affiliation(s)
- Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; (E.B.); (Z.C.); (M.K.); (A.K.)
- Correspondence: ; Tel.: +213-(0)-540-92-5400
| | - Widad Chelaghma
- Département de Biologie, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria;
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; (E.B.); (Z.C.); (M.K.); (A.K.)
- Département de Technologie Alimentaire, Institut des Sciences Vétérinaires et des Sciences Agronomiques, Université El Hadj Lakhder-Batna 1, Batna 05000, Algeria
| | - Zineb Cherak
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; (E.B.); (Z.C.); (M.K.); (A.K.)
| | - Meriem Khellaf
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; (E.B.); (Z.C.); (M.K.); (A.K.)
| | - Asma Khemri
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria; (E.B.); (Z.C.); (M.K.); (A.K.)
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix Marseille Université, IRD, MEPHI, 13005 Marseille, France;
- IHU Méditerranée Infection, Marseille, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| |
Collapse
|
11
|
Loucif L, Chelaghma W, Cherak Z, Bendjama E, Beroual F, Rolain JM. Detection of NDM-5 and MCR-1 antibiotic resistance encoding genes in Enterobacterales in long-distance migratory bird species Ciconia ciconia, Algeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152861. [PMID: 34998768 DOI: 10.1016/j.scitotenv.2021.152861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
β-lactams and colistin resistance in Enterobacterales is a global public health issue. In this study we aimed to investigate the occurrence and genetic determinants of Extended-Spectrum β-lactamases, carbapenemases and mcr-encoding-genes in Enterobacterales isolates recovered from the migratory bird species Ciconia ciconia in an Algerian city. A total of 62 faecal samples from white storks were collected. Samples were then subjected to selective isolation of β-lactams and colistin-resistant-Enterobacterales. The representative colonies were identified using Matrix-Assisted Laser Desorption-Ionisation Time-of-Flight Mass Spectrometry. Susceptibility testing was performed using the disk-diffusion method. ESBL, carbapenemases, and colistin resistance determinants were searched for by PCR and sequencing. The clonality relationships of the obtained isolates were investigated by multilocus sequence typing assays. Mating experiments were carried out to evaluate the transferability of the carbapenemase and mcr-genes. Forty-two isolates were identified as follows: Escherichia coli (n = 33), Klebsiella pneumoniae (n = 4), Proteus mirabilis (n = 4) and Citrobacter freundii (n = 1). Molecular analysis showed that twelve isolates carried the blaESBL genes alone, fifteen E. coli isolates were positive for the blaOXA-48 gene, six isolates were NDM-5-carriers (two P. mirabilis, two K. pneumoniae and two E. coli) and eight E. coli strains were positive for the mcr-1 gene. MLST results showed a high clonal diversity, where NDM-5-producing strains were assigned to two sequence types (ST167 for E. coli and ST198 for K. pneumoniae), whereas the mcr-1 positive E. coli isolates belonged to ST58, ST224, ST453, ST1286, ST2973, ST5542, ST9815 and the international high-risk resistant lineage ST101. To the best of our knowledge, this is the first report of blaNDM-5 gene in white storks and also the first describing the mcr-1 gene in white storks in Algeria. This study underlines the important role of migratory white storks as carriers of high-level drug-resistant bacteria, allowing their possible implication as indicators and sentinels for antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria.
| | - Widad Chelaghma
- Département de Biologie, Université Abou Bekr Belkaid-, Tlemcen 13000, Algeria
| | - Zineb Cherak
- Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra 07000, Algeria
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Ferhat Beroual
- Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université Batna 2, Batna 05000, Algeria
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille 13000, France
| |
Collapse
|
12
|
Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain JM. Emergence of Metallo-β-Lactamases and OXA-48 Carbapenemase Producing Gram-Negative Bacteria in Hospital Wastewater in Algeria: A Potential Dissemination Pathway Into the Environment. Microb Drug Resist 2021; 28:23-30. [PMID: 34314638 DOI: 10.1089/mdr.2020.0617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algérie
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algérie
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algérie
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algérie
| | - Amel Benbouza
- Faculté de Médecine, Université de Batna 2, Batna, Algeria
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
13
|
Hassen B, Abbassi MS, Ruiz-Ripa L, Mama OM, Ibrahim C, Benlabidi S, Hassen A, Torres C, Hammami S. Genetic characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae from a biological industrial wastewater treatment plant in Tunisia with detection of the colistin-resistance mcr-1 gene. FEMS Microbiol Ecol 2021; 97:5986610. [PMID: 33202005 DOI: 10.1093/femsec/fiaa231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the occurrence of extended-spectrum β-lactamases (ESBL) and associated resistance genes, integrons, and plasmid types, as well as the genetic relatedness of enterobacterial isolates in the wastewater treatment plant (WWTP) of La Charguia, Tunis City (Tunisia). A total of 100 water samples were collected at different points of the sewage treatment process during 2017-2019. Antimicrobial susceptibility was conducted by the disc-diffusion method. blaCTX-M, blaTEM and blaSHV genes as well as those encoding non-β-lactam resistance, the plasmid types, occurrence of class1 integrons and phylogenetic groups of Escherichia coli isolates were determined by PCR/sequencing. Genomic relatedness was determined by multi-locus sequence typing (MLST) for selected isolates. In total, 57 ESBL-producer isolates were recovered (47 E. coli, eight Klebsiella pneumoniae, 1 of the Citrobacter freundii complex and 1 of the Enterobacter cloacae complex). The CTX-M-15 enzyme was the most frequently detected ESBL, followed by CTX-M-27, CTX-M-55 and SHV-12. One E. coli isolate harboured the mcr-1 gene. The following phylogroups/sequence types (STs) were identified among ESBL-producing E. coli isolates: B2/ST131 (subclade-C1), A/ST3221, A/ST8900, D/ST69, D/ST2142, D/ST38, B1/ST2460 and B1/ST6448. High numbers of isolates harboured the class 1 integrons with various gene cassette arrays as well as IncP-1 and IncFIB plasmids. Our findings confirm the importance of WWTPs as hotspot collectors of ESBL-producing Enterobacteriaceae with a high likelihood of spread to human and natural environments.
Collapse
Affiliation(s)
- Bilel Hassen
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia.,Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Chourouk Ibrahim
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Saloua Benlabidi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Salah Hammami
- Université de la Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
14
|
Skarżyńska M, Zaja C M, Bomba A, Bocian Ł, Kozdruń W, Polak M, Wia Cek J, Wasyl D. Antimicrobial Resistance Glides in the Sky-Free-Living Birds as a Reservoir of Resistant Escherichia coli With Zoonotic Potential. Front Microbiol 2021; 12:656223. [PMID: 33897669 PMCID: PMC8062882 DOI: 10.3389/fmicb.2021.656223] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global health concerns; therefore, the identification of AMR reservoirs and vectors is essential. Attention should be paid to the recognition of potential hazards associated with wildlife as this field still seems to be incompletely explored. In this context, the role of free-living birds as AMR carriers is noteworthy. Therefore, we applied methods used in AMR monitoring, supplemented by colistin resistance screening, to investigate the AMR status of Escherichia coli from free-living birds coming from natural habitats and rescue centers. Whole-genome sequencing (WGS) of strains enabled to determine resistance mechanisms and investigate their epidemiological relationships and virulence potential. As far as we know, this study is one of the few that applied WGS of that number (n = 71) of strains coming from a wild avian reservoir. The primary concerns arising from our study relate to resistance and its determinants toward antimicrobial classes of the highest priority for the treatment of critical infections in people, e.g., cephalosporins, quinolones, polymyxins, and aminoglycosides, as well as fosfomycin. Among the numerous determinants, bla CTX-M-15, bla CMY-2, bla SHV-12, bla TEM-1B, qnrS1, qnrB19, mcr-1, fosA7, aac(3)-IIa, ant(3")-Ia, and aph(6)-Id and chromosomal gyrA, parC, and parE mutations were identified. Fifty-two sequence types (STs) noted among 71 E. coli included the global lineages ST131, ST10, and ST224 as well as the three novel STs 11104, 11105, and 11194. Numerous virulence factors were noted with the prevailing terC, gad, ompT, iss, traT, lpfA, and sitA. Single E. coli was Shiga toxin-producing. Our study shows that the clonal spread of E. coli lineages of public and animal health relevance is a serious avian-associated hazard.
Collapse
Affiliation(s)
- Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Magdalena Zaja C
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Puławy, Poland
| | - Wojciech Kozdruń
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Marcin Polak
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jarosław Wia Cek
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland.,Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
15
|
Epidemic HI2 Plasmids Mobilising the Carbapenemase Gene blaIMP-4 in Australian Clinical Samples Identified in Multiple Sublineages of Escherichia coli ST216 Colonising Silver Gulls. Microorganisms 2021; 9:microorganisms9030567. [PMID: 33801844 PMCID: PMC7999438 DOI: 10.3390/microorganisms9030567] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli ST216, including those that carry blaKPC-2, blaFOX-5, blaCTX-M-15 and mcr-1, have been linked to wild and urban-adapted birds and the colonisation of hospital environments causing recalcitrant, carbapenem-resistant human infections. Here we sequenced 22 multiple-drug resistant ST216 isolates from Australian silver gull chicks sampled from Five Islands, of which 21 carried nine or more antibiotic resistance genes including blaIMP-4 (n = 21), blaTEM-1b (n = 21), aac(3)-IId (n = 20), mph(A) (n = 20), catB3 (n = 20), sul1 (n = 20), aph(3”)-Ib (n = 18) and aph(6)-Id (n = 18) on FIB(K) (n = 20), HI2-ST1 (n = 11) and HI2-ST3 (n = 10) plasmids. We show that (i) all HI2 plasmids harbour blaIMP-4 in resistance regions containing In809 flanked by IS26 (HI2-ST1) or IS15DI (HI2-ST3) and diverse metal resistance genes; (ii) HI2-ST1 plasmids are highly related to plasmids reported in diverse Enterobacteriaceae sourced from humans, companion animals and wildlife; (iii) HI2 were a feature of the Australian gull isolates and were not observed in international ST216 isolates. Phylogenetic analyses identified close relationships between ST216 from Australian gull and clinical isolates from overseas. E. coli ST216 from Australian gulls harbour HI2 plasmids encoding resistance to clinically important antibiotics and metals. Our studies underscore the importance of adopting a one health approach to AMR and pathogen surveillance.
Collapse
|
16
|
Touati A, Mairi A. Carbapenemase-Producing Enterobacterales in Algeria: A Systematic Review. Microb Drug Resist 2020; 26:475-482. [DOI: 10.1089/mdr.2019.0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
| | - Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
17
|
Chaalal N, Touati A, Bakour S, Aissa MA, Sotto A, Lavigne JP, Pantel A. Spread of OXA-48 and NDM-1-Producing Klebsiella pneumoniae ST48 and ST101 in Chicken Meat in Western Algeria. Microb Drug Resist 2020; 27:492-500. [PMID: 32208064 DOI: 10.1089/mdr.2019.0419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: We investigated the prevalence of carbapenemase-producing Enterobacteriaceae (CPE) in chicken meat in Western Algeria in 2017. Results: From February to July 2017, samples of chicken meat from three poultry farms in Western Algeria were screened for the presence of CPE. Strains were characterized with regard to antibiotic resistance, β-lactamase content, Plasmid-mediated quinolone resistance, sulfonamide resistance genes, clonality (repetitive sequence-based profiles and multilocus sequence typing) and virulence traits. Of 181 samples analyzed, 29 (16.0%) carbapenemase-producing Klebsiella pneumoniae were detected. Twenty-three OXA-48-producers (79.3%) and six (20.7%) New Delhi metallo (NDM)-1-producers were observed. Clonality analysis showed three distinct lineages and clonal expansions of the OXA-48-producing K. pneumoniae ST48 and the NDM-1-producing K. pneumoniae ST101. These isolates harbored fimH, ureA, mrkD, entB, uge, and wabG. Neither capsular serotype genes nor hypermucoviscous phenotype were detected. Plasmid analysis confirmed that all these isolates harbored the transferable IncL and IncFIIK plasmids. Conclusions: This study reports the spread of OXA-48 and NDM-1-producing K. pneumoniae ST48 and ST101 in chicken meat in Western Algeria and demonstrates that food represents a reservoir of the carbapenemases encoding genes.
Collapse
Affiliation(s)
- Nadia Chaalal
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria.,Laboratory of Microbiology, National Institute of Veterinarian Sciences, Tiaret, Algeria.,Department of Microbiology and Hospital Hygiene, VBMI, INSERM U1047, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Mohamed Amine Aissa
- Laboratory of Microbiology, National Institute of Veterinarian Sciences, Tiaret, Algeria
| | - Albert Sotto
- Department of Infectious Diseases, VBMI, INSERM U1047, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, VBMI, INSERM U1047, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, VBMI, INSERM U1047, CHU Nîmes, University of Montpellier, Nîmes, France
| |
Collapse
|
18
|
ANTIBIOTIC RESISTANT BACTERIA IN WILDLIFE: PERSPECTIVES ON TRENDS, ACQUISITION AND DISSEMINATION, DATA GAPS, AND FUTURE DIRECTIONS. J Wildl Dis 2020. [DOI: 10.7589/2019-04-099] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ben Yahia H, Chairat S, Gharsa H, Alonso CA, Ben Sallem R, Porres-Osante N, Hamdi N, Torres C, Ben Slama K. First Report of KPC-2 and KPC-3-Producing Enterobacteriaceae in Wild Birds in Africa. MICROBIAL ECOLOGY 2020; 79:30-37. [PMID: 31055618 DOI: 10.1007/s00248-019-01375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/28/2019] [Indexed: 05/16/2023]
Abstract
The increased incidence of antibiotic-resistant Enterobacteriaceae is a public health problem worldwide. The aim of this study was to analyze the potential role of wild birds, given their capacity of migrating over long distances, in the spreading of carbapenemase, extended-spectrum β-lactamase (ESBL), and acquired-AmpC beta-lactamase-producing Enterobacteriaceae in the environment. Fecal and pellet samples were recovered from 150 wild birds in seven Tunisian regions and were inoculated in MacConkey-agar plates for Enterobacteriaceae recovery (one isolate/animal). Ninety-nine isolates were obtained and acquired resistance mechanisms were characterized in the five detected imipenem-resistant and/or cefotaxime-resistant isolates, by PCR and sequencing. The following ESBL, carbapenemase, and acquired-AmpC beta-lactamase genes were detected: blaCTX-M-15 (two Escherichia fergusonii and one Klebsiella oxytoca isolates), blaKPC-2 (one K. oxytoca), blaKPC-3 (one E. fergusonii), blaACT-36, and blaACC-2 (two K. oxytoca, four E. fergusonii, and two E. coli). The IncFIIs, IncF, IncFIB, IncK, IncP, and IncX replicons were detected among these beta-lactamase Enterobacteriaceae producers. The blaKPC-2, tetA, sul3, qnrB, and cmlA determinants were co-transferred by conjugation from K. oxytoca strain to E. coli J153, in association with IncK and IncF replicons. Our results support the implication of wild birds as a biological vector for carbapenemase, ESBL, and acquired-AmpC-producing Enterobacteriaceae.
Collapse
Affiliation(s)
- Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Sarra Chairat
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 1006, Tunis, Tunisia
| | - Carla Andrea Alonso
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Rym Ben Sallem
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Nerea Porres-Osante
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Nabil Hamdi
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 1006, Tunis, Tunisia
- U/R de Bio-Écologie et Systématique Évolutive; Faculté des Sciences de Tunis, Campus El Manar, 2092, Tunis, Tunisia
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain.
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia.
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
20
|
Repeated Detection of Carbapenemase-Producing Escherichia coli in Gulls Inhabiting Alaska. Antimicrob Agents Chemother 2019; 63:AAC.00758-19. [PMID: 31209000 DOI: 10.1128/aac.00758-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/28/2019] [Indexed: 11/20/2022] Open
Abstract
Here, we report the first detection of carbapenemase-producing Escherichia coli in Alaska and in wildlife in the United States. Wild bird (gull) feces sampled at three locations in Southcentral Alaska yielded isolates that harbored plasmid-encoded bla KPC-2 or chromosomally encoded bla OXA-48 and genes associated with antimicrobial resistance to up to eight antibiotic classes.
Collapse
|
21
|
Gharout-Sait A, Touati A, Ahmim M, Brasme L, Guillard T, Agsous A, de Champs C. Occurrence of Carbapenemase-Producing Klebsiella pneumoniae in Bat Guano. Microb Drug Resist 2019; 25:1057-1062. [PMID: 31021173 DOI: 10.1089/mdr.2018.0471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to screen for the presence of carbapenemase-producing Enterobacteriaceae (CPE) isolates from bat guano in Bejaia, Algeria. Guano samples (n = 110) were collected in Aokas's cave, Bejaia, Algeria, between March and May 2016. Samples were plated on MacConkey agar supplemented with ertapenem (0.5 mg/L) and vancomycin (32 mg/L). The isolates were identified and antimicrobial susceptibility was determined using disk diffusion method. Carbapenemase, extended spectrum β-lactamases, plasmid-mediated AmpC, and plasmid-mediated quinolone resistance genes were studied using PCR and sequencing. Clonal relatedness was studied using multilocus sequence typing (MLST). Two CPE isolates were identified as Klebsiella pneumoniae. PCR and sequencing identified the blaOXA-48 in one K. pneumoniae strain (CS34) and blaKPC-3 in the other strain (CS63). K. pneumoniae CS63 was found to carry blaTEM-1 and aac(6')-Ib genes. The MLST showed that K. pneumoniae CS63 was assigned to ST512, whereas K. pneumoniae CS34 belonged to ST1878. This is the first description of CPE from bats' guano.
Collapse
Affiliation(s)
- Alima Gharout-Sait
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Mourad Ahmim
- Laboratoire d'Ecologie et d'Environnement, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Lucien Brasme
- Laboratoire de Bactériologie, Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert DEBRE, Avenue du Général Koenig, Reims, France.,Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Thomas Guillard
- Laboratoire de Bactériologie, Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert DEBRE, Avenue du Général Koenig, Reims, France.,Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Amir Agsous
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Christophe de Champs
- Laboratoire de Bactériologie, Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert DEBRE, Avenue du Général Koenig, Reims, France.,Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
22
|
Mairi A, Pantel A, Ousalem F, Sotto A, Touati A, Lavigne JP. OXA-48-producing Enterobacterales in different ecological niches in Algeria: clonal expansion, plasmid characteristics and virulence traits. J Antimicrob Chemother 2019; 74:1848-1855. [DOI: 10.1093/jac/dkz146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Assia Mairi
- Laboratoire d’Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, Nîmes, France
| | - Alix Pantel
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, Nîmes, France
- Department of Microbiology, University Hospital Nîmes, Nîmes, France
| | - Farès Ousalem
- Institut de Biologie et de Physico-chimie, UMR826, Université de Paris Diderot, Paris, France
| | - Albert Sotto
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, Nîmes, France
- Department of Infectious Diseases, University Hospital Nîmes, Nîmes, France
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
| | - Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, Nîmes, France
- Department of Microbiology, University Hospital Nîmes, Nîmes, France
| |
Collapse
|
23
|
Khan FA, Söderquist B, Jass J. Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Front Microbiol 2019; 10:688. [PMID: 31019498 PMCID: PMC6458280 DOI: 10.3389/fmicb.2019.00688] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Antibiotic-resistant Enterobacteriaceae and non-lactose fermenting Gram-negative bacteria are a major cause of nosocomial infections. Antibiotic misuse has fueled the worldwide spread of resistant bacteria and the genes responsible for antibiotic resistance (ARGs). There is evidence that ARGs are ubiquitous in non-clinical environments, especially those affected by anthropogenic activity. However, the emergence and primary sources of ARGs in the environment of countries with strict regulations for antibiotics usage are not fully explored. The aim of the present study was to evaluate the repertoire of ARGs of culturable Gram-negative bacteria from directionally connected sites from the hospital to the wastewater treatment plant (WWTP), and downstream aquatic environments in central Sweden. The ARGs were detected from genomic DNA isolated from a population of selectively cultured coliform and Gram-negative bacteria using qPCR. The results show that hospital wastewater was a reservoir of several class B β-lactamase genes such as bla IMP-1 , bla IMP-2, and bla OXA-23, however, most of these genes were not observed in downstream locations. Moreover, β-lactamase genes such as bla OXA-48, bla CTX-M-8, and bla SFC-1, bla V IM-1, and bla V IM-13 were detected in downstream river water but not in the WWTP. The results indicate that the WWTP and hospital wastewaters were reservoirs of most ARGs and contribute to the diversity of ARGs in associated natural environments. However, this study suggests that other factors may also have minor contributions to the prevalence and diversity of ARGs in natural environments.
Collapse
Affiliation(s)
- Faisal Ahmad Khan
- The Life Science Centre – Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre – Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
24
|
Nawfal Dagher T, Al-Bayssari C, Diene SM, Azar E, Rolain JM. Emergence of plasmid-encoded VIM-2-producing Pseudomonas aeruginosa isolated from clinical samples in Lebanon. New Microbes New Infect 2019; 29:100521. [PMID: 30976429 PMCID: PMC6438892 DOI: 10.1016/j.nmni.2019.100521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to describe the emergence of carbapenem-resistant Pseudomonas aeruginosa isolated from clinical Lebanese patients. The resistance of these isolates is due to the presence of the plasmid-encoded blaVIM-2 gene. We provide its first description in Lebanon, as well as a description of disruption of the oprD gene by mutations.
Collapse
Affiliation(s)
- T Nawfal Dagher
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385 Marseille, Cedex 05 France.,Saint George Hospital University Medical Center, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - C Al-Bayssari
- Faculty of Sciences III, Lebanese University, Tripoli, Lebanon
| | - S M Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385 Marseille, Cedex 05 France
| | - E Azar
- Saint George Hospital University Medical Center, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - J-M Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385 Marseille, Cedex 05 France
| |
Collapse
|
25
|
Peyclit L, Chanteloup A, Hadjadj L, Rolain JM. Role of Institut Hospitalo-Universitaire Méditerranée Infection in the surveillance of resistance to antibiotics and training of students in the Mediterranean basin and in African countries. New Microbes New Infect 2018; 26:S52-S64. [PMID: 30402244 PMCID: PMC6205572 DOI: 10.1016/j.nmni.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Surveillance of antibiotic resistance has become a public global concern after the rapid worldwide dissemination of several antibiotic resistance genes. Here we report the role of the Institut Hospitalo-Universitaire Méditerranée Infection created in 2011 in the identification and description of multidrug-resistant bacteria thanks to collaborations and training of students from the Mediterranean basin and from African countries. Since the creation of the institute, 95 students and researchers have come from 19 different countries from these areas to characterize 6359 bacterial isolates from 7280 samples from humans (64%), animals (28%) and the environment (8%). Most bacterial isolates studied were Gram-negative bacteria (n = 5588; 87.9%), mostly from Algeria (n = 4190), Lebanon (n = 946), Greece (n = 610), Saudi Arabia (n = 299) and Senegal (n = 278). Antibiotic resistance was diversified with the detection and characterization of extended-spectrum β-lactamases, carbapenemases and resistance to colistin, vancomycin and methicillin. All those studies led to 97 indexed international scientific papers. Over the last 6 years, our institute has created a huge network of collaborations by training students that plays a major role in the surveillance of resistance to antibiotics in these countries.
Collapse
Affiliation(s)
| | | | | | - J.-M. Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
26
|
Dolejska M, Papagiannitsis CC. Plasmid-mediated resistance is going wild. Plasmid 2018; 99:99-111. [PMID: 30243983 DOI: 10.1016/j.plasmid.2018.09.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments.
Collapse
Affiliation(s)
- Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Costas C Papagiannitsis
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
27
|
Liu X, Liu H, Wang L, Peng Q, Li Y, Zhou H, Li Q. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Multidrug Resistant Escherichia coli From Swine in Northwest China. Front Microbiol 2018; 9:1756. [PMID: 30123199 PMCID: PMC6085443 DOI: 10.3389/fmicb.2018.01756] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022] Open
Abstract
Objectives: The aim of the present study was to explore the prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli collected from pig farms in Northwest China. Methods: Between May 2015 and June 2017, a total of 456 E. coli isolates were collected from fecal samples of healthy and diarrheal pigs in Northwest China to screen the ESBL producers. The β-lactamases, plasmid-mediated quinolone resistance (PMQR) genes and virulence genes among ESBL producers were corroborated by PCR and sequencing. Finally, ESBL producers were further grouped according to phylogenetic background and genetic relatedness. Results: Forty-four (9.6%) out of the 456 E. coli isolates were identified as ESBL-producing isolates. All ESBL producers exhibited multidrug resistance (MDR) phenotype, and more than 90% of the ESBL producers were resistant to amoxicillin, amoxicillin-clavulanic acid, oxytetracycline, enrofloxacin and sulfamethoxazole/trimethoprim. All ESBL producers harbored at least one type of β-lactamase, with blaCTX−M, blaTEM, blaSHV, blaOXA−48, and blaKPC−2 being detected in forty, thirty, seven, four, two and one isolates, respectively. Sequencing revealed the most common blaCTX−M subtype was blaCTX−M−14 (n = 24), followed by blaCTX−M−15 (n = 14), blaCTX−M−64 (n = 11), blaCTX−M−9 (n = 10) and blaCTX−M−123 (n = 9). qnrS (n = 23) was the predominant PMQR gene, and all PMQR genes were detected in co-existence with β-lactamase genes. estA (n = 18) and F4 (n = 18) were the most prevalent enterotoxin and fimbrial adhesin, respectively, and 27 different virotypes were found with respect to the association of enterotoxins and fimbrial adhesins. Twenty-four different sequence types (STs) were identified among 44 ESBL producers, and clones ST405, ST10 and ST648 were strongly present in more than one-third (34.1%) of ESBL producers. Conclusion: All ESBL-producing E. coli isolates exhibited MDR phenotype, and showed high prevalence of β-lactamase and PMQR genes. Especially, one isolate harbored ESBL genes blaTEM, blaSHV, blaCTX−M−9, blaCTX−M−14, blaCTX−M−64, and carbapenemase gene blaOXA−48 and blaKPC−2, as well as PMQR genes qnrS, qnrB, qnrD, qepA and aac(6')-Ib-cr.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haixia Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Le Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Peng
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yinqian Li
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hongchao Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qinfan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|