1
|
De Lorenzi G, Gherpelli Y, Luppi A, Pupillo G, Bassi P, Dottori M, Di Donato A, Merialdi G, Bonilauri P. In vitro susceptibility of Brachyspira hyodysenteriae strains isolated in pigs in northern Italy between 2005 and 2022. Res Vet Sci 2024; 168:105152. [PMID: 38219471 DOI: 10.1016/j.rvsc.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Pleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported. 536 strains of B. hyodysenteriae were isolated from symptomatic pigs weighing 30-150 kg in northern Italy between 2005 and 2022. B. hyodysenteriae was isolated by standard methods and confirmed by PCR. The minimum inhibitory concentration (MIC) to doxycycline, lincomycin, tiamulin, tylosin, tylvalosine and valnemulin was evaluated according to CLSI procedures and MIC data were reported as MIC 50 and MIC 90. The temporal trend of the MIC values was evaluated by dividing the data into two groups (2005-2013 and 2014-2022). Comparison of the distribution in frequency classes in the two periods was performed using Pearson's chi-squared test (p < 0.01). MIC 50 was close to the highest values tested for lincomycin and tylosin, while MIC 90 was close to the highest values tested for all antibiotics. 71.7% of the strains were susceptible to tylvalosin, while 75%-80.4% had reduced susceptibility to valnemulin and tiamulin, respectively. The difference in the distribution of MIC classes was statistically significant in the two periods for doxycycline, tiamulin, tylvalosin and valnemulin, and more MIC classes above the epidemiological cut-off were observed in 2014-2022 compared with 2005-2013. The evaluation of the trends during the period considered shows a decreasing rate of wild-type strains with MIC values below the epidemiological cut-off over time and confirms the presence of resistant strains in northern Italy.
Collapse
Affiliation(s)
- Giorgia De Lorenzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Yuri Gherpelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Patrizia Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Alessandra Di Donato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| |
Collapse
|
2
|
Quintana-Hayashi MP, Zalem D, Lindén S, Teneberg S. Porcine intestinal glycosphingolipids recognized by Brachyspira hyodysenteriae. Microb Pathog 2023; 175:105961. [PMID: 36581306 DOI: 10.1016/j.micpath.2022.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Swine dysentery caused by Brachyspira hyodysenteriae is a disease present worldwide with an important economic impact on the farming business, resulting in an increased use of antibiotics. In the present study, we investigated the binding of B. hyodysenteriae to glycosphingolipids from porcine small intestinal epithelium in order to determine the glycosphingolipids involved in B. hyodysenteriae adhesion. Specific interactions between B. hyodysenteriae and two non-acid glycosphingolipids were obtained. These binding-active glycosphingolipids, were characterized by mass spectrometry as lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer) and the B5 glycosphingolipid (Galα3Galβ4GlcNAcβ3Galβ4Glcβ1Cer). Comparative binding studies using structurally related reference glycosphingolipids showed that B. hyodysenteriae binding to lactotetraosylceramide required an unsubstituted terminal Galβ3GlcNAc sequence, while for binding to the B5 pentaosylceramide the terminal Galα3Galβ4GlcNAc sequence is the minimum element recognized by the bacteria. Binding of Griffonia simplicifolia IB4 lectin to pig colon tissue sections from healthy control pig and B. hyodysenteriae infected pigs showed that in the healthy pigs the Galα3Gal epitope was mainly present in the lamina propria. In contrast, in four out of five pigs with swine dysentery there was an increased expression of Galα3Gal in the goblet cells and in the colonic crypts, where B. hyodysenteriae also was present. The one pig that had recovered by the time of necropsy had the Galα3Gal epitope only in the lamina propria. These data are consistent with a model where a transient increase in the carbohydrate sequence recognized by the bacteria occur in colonic mucins during B. hyodysenteriae infection, suggesting that the mucins may act as decoys contributing to clearance of the infection. These findings may lead to novel strategies for treatment of B. hyodysenteriae induced swine dysentery.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Dani Zalem
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
3
|
Vega C, Pérez-Pérez L, Argüello H, Gómez-García M, Puente H, Fernández-Usón I, Rubio P, Carvajal A. In vitro evaluation of gentamicin activity against Spanish field isolates of Brachyspira hyodysenteriae. Porcine Health Manag 2022; 8:48. [DOI: 10.1186/s40813-022-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The treatment of swine dysentery (SD) has become constrained in recent years due to the limited availability of effective drugs combined with a rise in antimicrobial resistance. Gentamicin, an aminoglycoside antibiotic, is authorised for the control of this disease in several European countries but has not been extensively used so far. In this study, the in vitro susceptibility of 56 Brachyspira hyodysenteriae field isolates was evaluated against gentamicin using a broth microdilution test. The molecular basis of decreased susceptibility to gentamicin was also investigated by sequencing the 16S rRNA gene and phylogenetic relatedness by multiple-locus variable number tandem-repeat analysis (MLVA).
Results
Most B. hyodysenteriae isolates presented low minimum inhibitory concentration (MIC) values to gentamicin, with a mode of 2 µg/mL, a median or MIC50 of 4 µg/mL and percentile 90 or MIC90 of 16 µg/mL. The distribution of these values over the period studied (2011–2019) did not show a tendency towards the development of resistance to gentamicin. Differences in susceptibility among isolates could be explained by two point-mutations in the 16S rRNA gene, C990T and A1185G, which were only present in isolates with high MICs. These isolates were typed in three different MLVA clusters. Analyses of co-resistance between gentamicin and antimicrobials commonly used for the treatment of SD revealed that resistance to tiamulin and valnemulin was associated with low MICs for gentamicin.
Conclusions
The results provide an accurate characterisation of antimicrobial sensitivity to gentamicin and possible mechanisms of resistance in Spanish B. hyodysenteriae isolates. These findings allow us to propose gentamicin as an alternative in the antibiotic management of SD, particularly in outbreaks caused by pleuromutilin resistant isolates.
Collapse
|
4
|
Implementation and evaluation of different eradication strategies for Brachyspira hyodysenteriae. Porcine Health Manag 2020; 6:27. [PMID: 32944272 PMCID: PMC7489031 DOI: 10.1186/s40813-020-00162-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Brachyspira infections are causing major losses to the pig industry and lead to high antimicrobial use. Treatment of Brachyspira (B.) hyodysenteriae infections may be problematic due to the high level of antimicrobial resistance. The present study implemented and evaluated farm-specific eradication programmes for B. hyodysenteriae in 10 different infected pig farms in Belgium. Results Ten pig farms clinically infected with B. hyodysenteriae volunteered to implement a farm-specific eradication programme. The programme depended on the farm and management characteristics, antimicrobial susceptibility of the B. hyodysenteriae strain and the motivation of the farmer. Two farms practiced total depopulation, six farms partial depopulation and two farms antimicrobial medication without depopulation. In addition, all farms implemented biosecurity measures, and faeces samples were tested for the presence of B. hyodysenteriae at 6, 9 and 12 months after the start of the program. Single Brachyspira isolates from before and after the programme were typed using multilocus sequence typing (MLST).Eradication was successful in four farms. Two of them (farrow-to-finish and finishing herd) had applied total depopulation and respected a vacancy period of at least 3 weeks. A third farm (gilt farm) practised partial depopulation, the rooms remained empty for 28 days and changed the source of breeding gilts. The fourth farm practised partial depopulation, the stables remained empty for 3 weeks, and used antimicrobial medication. The eradication programme was not successful in six farms. Two of the latter farms only used medication without partial depopulation. Four farms practiced partial depopulation, one of them combined it with antimicrobial medication. The cleaning and disinfection procedures, rodent control, stand-empty period and/or other biosecurity measures in the six farms were not always implemented properly. In two of three farms, isolates belonging to the same MLST type were found before and after eradication. Conclusions Total depopulation or partial depopulation combined with implementing strict biosecurity measures allowed eradication of B. hyodysenteriae from clinically infected pig farms. Programmes based on antimicrobials without depopulation or partial depopulation without strictly adhering to all suggested biosecurity measures were not successful. Stockmanship and motivation of the farmer to permanently maintain high biosecurity standards are essential for success.
Collapse
|
5
|
Lugsomya K, Zeeh F, La T, Phillips N, Hampson DJ. First identification and characterisation of Brachyspira hyodysenteriae in pigs in Hong Kong. Porcine Health Manag 2019; 5:27. [PMID: 31827879 PMCID: PMC6891987 DOI: 10.1186/s40813-019-0133-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Swine dysentery (SD) is an important endemic disease of pigs throughout the world. The most common aetiological agent is the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. The related spirochaete Brachyspira pilosicoli causes a milder form of colitis. We report the first isolation of B. hyodysenteriae and B. pilosicoli from a pig farm in Hong Kong. Faecal samples containing mucus or fresh blood were collected from the ground where finisher pigs had just been loaded into a truck for transport to the abattoir. The samples were subjected to selective anaerobic culture and PCR for B. hyodysenteriae and B. pilosicoli, and two isolates of both species were obtained. The B. hyodysenteriae isolates showed clinical resistance to tylosin and lincomycin, whilst the B. pilosicoli isolates were resistant to tylosin and showed intermediate susceptibility to lincomycin. The B. hyodysenteriae isolates were subjected to multilocus sequence typing and a single previously undescribed sequence type (ST250) was identified. Disease was not recorded in other pigs on the farm, but it may have been masked by the use of antimicrobials. Further work is required to examine the distribution of these two pathogens in this and other farms in Hong Kong and in adjoining mainland China.
Collapse
Affiliation(s)
- Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong Hong Kong, Hong Kong SAR
| | - Friederike Zeeh
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong Hong Kong, Hong Kong SAR
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Nyree Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - David J. Hampson
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong Hong Kong, Hong Kong SAR
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150 Australia
| |
Collapse
|
6
|
Hampson DJ, Lugsomya K, La T, Phillips ND, Trott DJ, Abraham S. Antimicrobial resistance in Brachyspira - An increasing problem for disease control. Vet Microbiol 2018; 229:59-71. [PMID: 30642599 DOI: 10.1016/j.vetmic.2018.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 01/11/2023]
Abstract
Across all bacterial species the continuing reduction in susceptibility to antimicrobial agents is a critical and increasing threat for disease control. This mini-review outlines the extent of this problem amongst anaerobic intestinal spirochaetes of the genus Brachyspira, of which there are currently nine officially recognised species. These include some important pathogens that may cause colitis with diarrhoea and/or dysentery in various mammalian and avian species, but most notably in pigs and in adult chickens. The most economically significant pathogen is Brachyspira hyodysenteriae, the spirochaete which causes swine dysentery in countries throughout the world. Control of infections with Brachyspira species has long relied on the prophylactic or therapeutic use of antimicrobials, but increasingly strains with reduced susceptibility and sometimes multidrug resistance to previously effective antimicrobial agents are being encountered. In this mini-review we outline these problems and explain the extent and molecular basis of the emerging resistance. Future control will rely on developing and applying standardised methods for measuring antimicrobial susceptibility; improving surveillance of resistance using traditional phenotypic as well as genomic analysis of known resistance determinants; improving understanding of the molecular basis of resistance to different drug classes; improving farmer and veterinarian education about prudent antimicrobial use so as to reduce selective pressure on the emergence of resistance; and developing alternatives to antimicrobials as a means to control these infections.
Collapse
Affiliation(s)
- David J Hampson
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Kittitat Lugsomya
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Nyree Dale Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Sam Abraham
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|