1
|
Urbanowicz P, Izdebski R, Biedrzycka M, Gniadkowski M. VIM-type metallo-β-lactamase (MBL)-encoding genomic islands in Pseudomonas spp. in Poland: predominance of clc-like integrative and conjugative elements (ICEs). J Antimicrob Chemother 2024; 79:1030-1037. [PMID: 38488311 DOI: 10.1093/jac/dkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES To characterize VIM-type metallo-β-lactamase (MBL)-encoding genomic islands (GIs) in Pseudomonas aeruginosa and P. putida group isolates from Polish hospitals from 2001-2015/16. METHODS Twelve P. aeruginosa and 20 P. putida group isolates producing VIM-like MBLs were selected from a large collection of these based on epidemiological and typing data. The organisms represented all major epidemic genotypes of these species spread in Poland with chromosomally located blaVIM gene-carrying integrons. The previously determined short-read sequences were complemented by long-read sequencing in this study. The comparative structural analysis of the GIs used a variety of bioinformatic tools. RESULTS Thirty different GIs with blaVIM integrons were identified in the 32 isolates, of which 24 GIs from 26 isolates were integrative and conjugative elements (ICEs) of the clc family. These in turn were dominated by 21 variants of the GI2/ICE6441 subfamily with a total of 19 VIM integrons, each inserted in the same position within the ICE's Tn21-like transposon Tn4380. The three other ICEs formed a novel ICE6705 subfamily, lacking Tn4380 and having different VIM integrons located in another site of the elements. The remaining six non-ICE GIs represented miscellaneous structures. The presence of various integrons in the same ICE sublineage, and of the same integron in different GIs, indicated circulation and recombination of the integron-carrying genetic platforms across Pseudomonas species/genotypes. CONCLUSIONS Despite the general diversity of the blaVIM-carrying GIs in Pseudomonas spp. in Poland, a clear predominance of broadly spread and rapidly evolving clc-type ICEs was documented, confirming their significant role in antimicrobial resistance epidemiology.
Collapse
Affiliation(s)
- P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| |
Collapse
|
2
|
Yamada AY, de Souza AR, Lima MDJDC, Reis AD, Campos KR, Bertani AMDJ, de Araujo LJT, Sacchi CT, Tiba-Casas MR, Camargo CH. Co-production of Classes A and B Carbapenemases BKC-1 and VIM-2 in a Clinical Pseudomonas Putida Group Isolate from Brazil. Curr Microbiol 2022; 79:250. [PMID: 35834136 DOI: 10.1007/s00284-022-02945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Emergence of resistance to classical antimicrobial agents is a public health issue, especially in countries with high antimicrobial consumption rates. Carbapenems have been employed as first-choice option for empirical treatment complicated infections. However, in the last decades, frequency of carbapenemase-producing Gram-negative bacteria has rising, demanding the use of alternative antimicrobial agents. By sequencing the entire genomes with short and long reads technologies, we report the isolation and genomic characterization of a carbapenem-resistant Pseudomonas clinical isolate. The identification based on average nucleotide identity indicates a putative new species into the Pseudomonas putida Group, which carries both the blaBKC-1 and blaVIM-2 carbapenemase genes. The blaBKC-1 was found to be on a transferable IncQ plasmid backbone, whereas blaVIM-2 was found in a new integron, In2126 (intl1∆-blaVIM-2-aacA7-blaVIM-2∆-aacA27-3'CS), described in this study. Our findings indicate that co-occurrence of classes A and B carbapenemase enzymes underscores the evolving emergence of more complex antimicrobial resistance in opportunistic pathogens.
Collapse
Affiliation(s)
- Amanda Yaeko Yamada
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil.,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil
| | - Andreia Rodrigues de Souza
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | | | - Alex Domingos Reis
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | | | - Leonardo Jose Tadeu de Araujo
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Claudio Tavares Sacchi
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Monique Ribeiro Tiba-Casas
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | - Carlos Henrique Camargo
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil. .,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil.
| |
Collapse
|
3
|
Urbanowicz P, Izdebski R, Biedrzycka M, Literacka E, Hryniewicz W, Gniadkowski M. Genomic Epidemiology of MBL-Producing Pseudomonas putida Group Isolates in Poland. Infect Dis Ther 2022; 11:1725-1740. [PMID: 35689153 PMCID: PMC9334476 DOI: 10.1007/s40121-022-00659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Pseudomonas putida group are described as low-incidence opportunistic pathogens, but also as a significant reservoir of antimicrobial resistance (AMR) genes, including those of metallo-β-lactamases (MBLs). Our objective was the molecular and genomic characterization of MBL-producing P. putida (MPPP) group isolates from Poland, focusing on population structures, successful genotypes and MBL-encoding integrons. Methods During a country-wide MBL surveillance in Pseudomonas spp., 59 non-duplicate MPPP isolates were collected from 36 hospitals in 23 towns from 2003 to 2016. All of the isolates were subjected to whole-genome sequencing (WGS), followed by species identification, multi-locus sequence typing (MLST), single-nucleotide polymorphism (SNP)-based phylogenetic/clonality analysis, resistome determination, and susceptibility testing. Results The study collection comprised 12 species, of which P. alloputida (n = 19), P. monteilii (n = 15), and P. asiatica (n = 11) prevailed, while the others were P. kurunegalensis, P. putida, P. soli, P. mosselii, P. juntendi, and four potentially new species. MLST classified the isolates into 23 sequence types (STs) of which 21 were new, with three main clones, namely P. alloputida ST69, P.monteilii ST95 and P. asiatica ST15. The isolates produced VIM-like MBLs only, largely VIM-2 (n = 40), encoded by 24 different class 1 integrons (ten new), a number of which occurred also in P. aeruginosa and/or Enterobacterales in Poland. The plasmid pool was dominated by IncP-9, IncP-2, and pMOS94-like types. Multiple isolates were extensively drug-resistant. Conclusions This study, being one of the most comprehensive analyses of MPPP so far, has shown high diversity of the isolates in general, with three apparently international lineages, each internally diversified by MBL-encoding structures. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00659-z.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
4
|
Kosheleva IA, Izmalkova TY, Sazonova OI, Siunova TV, Gafarov AB, Sokolov SL, Boronin AM. Antibiotic-Resistant Microorganisms and Multiple Drug Resistance Determinants in Pseudomonas Bacteria from the Pushchino Wastewater Treatment Facilities. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Evaluating the Bacterial Diversity from the Southwest Coast of India Using Fatty Acid Methyl Ester Profiles. Curr Microbiol 2021; 78:649-658. [PMID: 33392676 DOI: 10.1007/s00284-020-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
The fatty acid composition of bacterial isolates remains stable under standardized culture conditions, which makes it a useful taxonomic marker. The present study aims to characterize the diversity and quantity of fatty acid methyl esters (FAME) profiles of cultivable bacterial isolates collected along the southwest coast of India. Based on the similarity indices (range > 0.3-0.7) of the FAME profiles, the isolates were aggregated into 10 families, 11 genera and 19 species of cultured isolates. The following classes of bacteria were found: Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Actinobacteria, which also included a few pathogens such as Pseudomonas, Staphylococcus and Bacillus sp. The hydroxyl FAMEs 2-hydroxydodecanoic acid (C12:0 2OH), 2-hydroxypentadecanoic acid (C15:0 2OH),3-hydroxy 14-methylpentadecanoic acid (C16:0iso 3OH), 3 hydroxy hexadecenoic acid (C16:0 3OH) and 3-hydroxy 15-methylhexadecanoic acid (C17:0iso 3OH), as well as the unsaturated FAMEs (11Z)-11-hexadecenoic acid (C16:1 ɷ5c), were exclusively associated with the isolates from Mangalore samples. Similarly, FAMEs 2-hydroxydecanoic acid (C10:0 2OH), 9-methyldecanoic acid (C11:0iso), undecanoic acid (C11:0), tridecanoic acid (C13:0), 10-methylhexadecanoic acid (C16:0 10-CH3) and (7Z)-7-hexadecenoic acid (C16:1 ɷ9c) occurred only in the isolates from Trivandrum samples. However, the isolates from Goa did not possess a signature FAME profile. The reproducibility of the GC-MIDI bacterial identification system was evaluated using 16S rRNA gene sequencing techniques for selected isolates.
Collapse
|
6
|
Puja H, Comment G, Chassagne S, Plésiat P, Jeannot K. Coordinate overexpression of two
RND
efflux systems,
ParXY
and
TtgABC
, is responsible for multidrug resistance in
Pseudomonas putida. Environ Microbiol 2020; 22:5222-5231. [DOI: 10.1111/1462-2920.15200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Hélène Puja
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Gwendoline Comment
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Sophie Chassagne
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Patrick Plésiat
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| | - Katy Jeannot
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| |
Collapse
|
7
|
Prospective evaluation of the Amplidiag® CarbaR+VRE assay for direct screening of carbapenemase producing gram-negative bacilli from rectal swabs. Diagn Microbiol Infect Dis 2019; 95:114890. [DOI: 10.1016/j.diagmicrobio.2019.114890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 11/22/2022]
|
8
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
9
|
Molecular Characterization of Carbapenemase-Producing Gram-negative Bacteria Isolated from Clinical Specimens in Baghdad, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|