1
|
Valenzuela X, Hedman H, Villagomez A, Cardenas P, Eisenberg JN, Levy K, Zhang L, Trueba G. Distribution of blaCTX-M-gene variants in E. coli from different origins in Ecuador. MEDICINE IN MICROECOLOGY 2023; 18:100092. [PMID: 38148908 PMCID: PMC10751039 DOI: 10.1016/j.medmic.2023.100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate blaCTX-M gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The blaCTX-M associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of blaCTX-M transfer between chickens and humans in the community.
Collapse
Affiliation(s)
- Xavier Valenzuela
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Facultad de Medicina, Universidad de la Americas (UDLA), Quito, Ecuador
| | - Hayden Hedman
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Alma Villagomez
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Joseph N.S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, United States
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
2
|
Zurita J, Sevillano G, Paz Y Miño A, Haro N, Larrea-Álvarez M, Alcocer I, Ortega-Paredes D. Dominance of ST131, B2, blaCTX-M-15, and papA-papC-kpsMII-uitA among ESBL Escherichia coli isolated from bloodstream infections in Quito, Ecuador: a 10-year surveillance study (2009-2019). J Appl Microbiol 2023; 134:lxad269. [PMID: 37974051 DOI: 10.1093/jambio/lxad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS This study aimed to examine antibiotic resistance and the epidemiology of extended-spectrum β-lactamases (ESBL)-producing Escherichia coli associated with bloodstream infections over a period of 10 years. METHODS AND RESULTS Isolates were collected from January 2009 to December 2019 and those testing for E. coli were included. Antibiotic susceptibility was tested using the VITEK® system. Selected isolates were further characterized by amplification of marker genes (virulence traits, phylogroups, and sequence types). A total of 166 ESBL-producing E. coli were recovered. The blaCTX-M-15 allele was the most abundant. Most of the isolates were resistant to ceftriaxone, cefepime, ceftazidime, ampicillin/sulbactam, piperacillin/tazobactam, and ciprofloxacin. No resistance to carbapenems was registered. More than 80% of bacteria were classified as extraintestinal pathogenic E. coli (ExPEC), and the combination of virulence traits:papA-papC-kpsMII-uitA was the most common. Phylogroup B2 was the most prevalent, and bacteria predominantly belonged to ST131. CONCLUSIONS There was an increase in the ExPEC ESBL-E coli in bloodstream infections and the relationship between the isolates found in these infections during these 10 years.
Collapse
Affiliation(s)
- Jeannete Zurita
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
- Servicio de Microbiología y Tuberculosis, Hospital Vozandes, Quito 170521, Ecuador
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Ariane Paz Y Miño
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Nathalí Haro
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Km 2.5 vía a Samborondón 0901952, Ecuador
| | - Iliana Alcocer
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - David Ortega-Paredes
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Km 2.5 vía a Samborondón 0901952, Ecuador
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los, Antimicrobianos (UNIETAR), Facultad de Veterinaria, Universidad Central del Ecuador, Quito 170129, Ecuador
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo 15782, Spain
| |
Collapse
|
3
|
Bastidas-Caldes C, Cisneros-Vásquez E, Zambrano A, Mosquera-Maza A, Calero-Cáceres W, Rey J, Yamamoto Y, Yamamoto M, Calvopiña M, de Waard JH. Co-Harboring of Beta-Lactamases and mcr-1 Genes in Escherichia coli and Klebsiella pneumoniae from Healthy Carriers and Backyard Animals in Rural Communities in Ecuador. Antibiotics (Basel) 2023; 12:antibiotics12050856. [PMID: 37237759 DOI: 10.3390/antibiotics12050856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Few studies have addressed drug resistance of Enterobacterales in rural communities in developing countries. This study aimed to determine the coexistence of extended-spectrum β-lactamase (ESBL) and carbapenemase genes in Escherichia coli and Klebsiella pneumoniae strains carrying the mcr-1 gene in rural communities in Ecuador from healthy humans and their backyard animals. Sixty-two strains, thirty E. coli and thirty-two K. pneumoniae strains carrying the mcr-1 gene were selected from a previous study. PCR were performed for the presence of ESBLs and carbapenemase genes. The strains were further characterized, and the genetic relationship was studied with multi-locus sequencing typing (MLST) of seven housekeeping genes. Fifty-nine of the sixty-two mcr-1 isolates (95%) harbored at least on β-lactam resistance gene. The most prevalent ESBL genes were the blaTEM genes (present in in 80% of the E. coli strains) and the blaSHV gene (present in 84% of the K. pneumoniae strains). MSLT analysis revealed 28 different sequence types (ST); 15 for E. coli and 12 for K. pneumoniae, with most ST never described in humans and animals. The coexistence of mcr-1 and β-lactams resistant genes in E. coli and K. pneumoniae strains is alarming and threatens the efficacy of last-resort antibiotics. Our findings highlight backyard animals as a reservoir of mcr-1/β-lactams resistant genes.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | - Emily Cisneros-Vásquez
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | - Antonella Zambrano
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | | | - William Calero-Cáceres
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato 180103, Ecuador
| | - Joaquín Rey
- Unidad de Patología Infecciosa y Epidemiología, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Yoshimasa Yamamoto
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Mayumi Yamamoto
- Health Administration Center, Gifu University, Gifu 501-1193, Japan
| | - Manuel Calvopiña
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito 170124, Ecuador
| | - Jacobus H de Waard
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
4
|
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C, Calvopiña M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022; 15:5759-5779. [PMID: 36204394 PMCID: PMC9531622 DOI: 10.2147/idr.s371845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
- Doctoral Program in Public and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
- Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, 170124, Ecuador, Tel +593 983 174949, Email
| | - Daniel Romero-Alvarez
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | - Victor Valdez-Vélez
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Roberto D Morales
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Andrés Montalvo-Hernández
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Cicero Gomes-Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Manuel Calvopiña
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
5
|
Montero L, Irazabal J, Cardenas P, Graham JP, Trueba G. Extended-Spectrum Beta-Lactamase Producing- Escherichia coli Isolated From Irrigation Waters and Produce in Ecuador. Front Microbiol 2021; 12:709418. [PMID: 34671324 PMCID: PMC8521160 DOI: 10.3389/fmicb.2021.709418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
In cities across the globe, the majority of wastewater – that includes drug resistant and pathogenic bacteria among other contaminants – is released into streams untreated. This water is often subsequently used for irrigation of pastures and produce. This use of wastewater-contaminated streams allows antibiotic-resistant bacteria to potentially cycle back to humans through agricultural products. In this study, we investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from produce and irrigation water across 17 provinces of Ecuador. A total of 117 vegetable samples, 119 fruit samples, and 38 irrigation water samples were analyzed. Results showed that 11% of the samples were positive for E. coli including 11 irrigation water samples (29%), and samples of 13 vegetables (11%), and 11 fruits (9%). Among the 165 E. coli isolates cultured, 96 (58%) had the ESBL phenotype, and 58% of ESBL producing E. coli came from irrigation water samples, 11% from vegetables, and 30% from fruits. The blaCTX–M–55, blaCTX–M 65, and blaCTX–M 15 genes were the most frequently found gene associated with the ESBL phenotype and coincided with the blaCTX–M alleles associated with human infections in Ecuador. Three isolates had the mcr-1 gene which is responsible for colistin resistance. This report provides evidence of the potential role of irrigation water in the growing antimicrobial resistance crisis in Ecuador.
Collapse
Affiliation(s)
- Lorena Montero
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jorge Irazabal
- Agrocalidad, Agencia de Regulación y Control Fito y Zoosanitario, Quito, Ecuador
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P Graham
- Environmental Health Sciences Division, University of California, Berkeley, Berkeley, CA, United States
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
6
|
Extended-spectrum beta-lactamases and plasmid diversity in urinary isolates of Escherichia coli in Croatia: a nation-wide, multicentric, retrospective study. Folia Microbiol (Praha) 2020; 65:649-667. [PMID: 31953747 DOI: 10.1007/s12223-019-00769-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
In recent years, a dramatic increase in the prevalence of Escherichia coli strains producing extended-spectrum β-lactamases (ESBLs) has been observed - both in the community and in healthcare settings. This multicentric study aimed to characterize ESBLs produced by E. coli isolates causing hospital-onset and community urinary tract infections, as well as to compare their antimicrobial sensitivity patterns, β-lactamase content and plasmid types. Phenotypic tests for the detection of ESBLs and plasmid-mediated AmpC β-lactamases were initially pursued, followed by molecular detection of resistance genes, plasmid characterization, genotyping with pulsed-field gel electrophoresis and whole genome sequencing (WGS). The isolates exhibited high level of resistance to expanded-spectrum cephalosporins (ESC) and carried CTX-M (cefotaximase-Munich) or TEM (Temoniera) β-lactamases. All six representative isolates subjected to WGS belonged to the widespread clone ST131. In conclusion, our study demonstrated dissemination of group 1 CTX-M positive E. coli in different geographic regions of Croatia, but also different components of the health care systems (hospitals, nursing homes and the community) and confirmed the switch from SHV-2 (suphydril variant) and SHV-5 ESBLs to the nation-wide predominance of group 1 CTX-M β-lactamases. Different plasmids were shown to be associated with the dissemination of blaCTX-M genes in different geographic regions of Croatia.
Collapse
|
7
|
Zurita J, Yánez F, Sevillano G, Ortega-Paredes D, Paz Y Miño A. Ready-to-eat street food: a potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett Appl Microbiol 2020; 70:203-209. [PMID: 31837237 DOI: 10.1111/lam.13263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022]
Abstract
Ready-to-eat food contamination with ESBL-producing Escherichia coli is a growing health concern. Some of these strains also are epidemic clones and can cause community-associated infections that are difficult to treat. In this study, the occurrence of ESBL-producing E. coli contaminated ready-to-eat street food in Quito, Ecuador was evaluated. In total, 150 samples were collected randomly in the most crowded sites of the city. In all, 34 samples (34/150; 22·6%) were positive for total thermotolerant (44·5°C) coliforms resistant to cefotaxime. MALDI-TOF analysis identified that the E. coli was found in 20 food samples (20/34; 59%). ESBL gene blaCTX-M-55 was identified in nine isolates, blaCTX-M-15 in six isolates, blaCTX-M-14 in two isolates, and one isolate each harboured blaCTX-M-24 , blaCTX-M-65 , blaCTX-M-55 and blaCTX-M-8 . Phylogenetic groups like A and B1 were the most common, followed by groups D and B2. MLST analysis identified 12 different sequence types (STs), the most common was ST162. Recognized epidemic clonal groups ST410, ST131 and ST744 were encountered. Ready-to-eat street food is a potential way of spreading ESBL-producing E. coli epidemic clones in Quito, Ecuador. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identified ESBL-producing Escherichia coli epidemic clones: ST131, ST410 and ST744 in ready-to-eat street food samples. Street food is a possible way to spread harm multidrug-resistant (MDR) E. coli strains in the community. Studies to identify the contamination sources of this kind of food are needed to tackle MDR E. coli dissemination.
Collapse
Affiliation(s)
- J Zurita
- Faculty of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Department of Biomedical Research, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - F Yánez
- Faculty of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - G Sevillano
- Department of Biomedical Research, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - D Ortega-Paredes
- Department of Biomedical Research, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - A Paz Y Miño
- Department of Biomedical Research, Zurita & Zurita Laboratorios, Quito, Ecuador
| |
Collapse
|