1
|
Vargas-Reyes M, Alcántara R, Alfonsi S, Peñaranda K, Petrelli D, Spurio R, Pajuelo MJ, Milon P. Versatile and Portable Cas12a-mediated Detection of Antibiotic Resistance Markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623642. [PMID: 39605319 PMCID: PMC11601430 DOI: 10.1101/2024.11.14.623642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antimicrobial resistance (AMR) is a global public health problem particularly accentuated in low- and middle-income countries, largely due to a lack of access to sanitation and hygiene, lack of awareness and knowledge, and the inadequacy of molecular laboratories for timely and accurate surveillance programs. This study introduces a versatile molecular detection toolbox (C12a) for antibiotic resistance gene markers using CRISPR/Cas12a coupled to PCR. Our toolbox can detect less than 3×10-7 ng of DNA (100 attoMolar) or 102 CFU/mL. High concordance was observed when comparing the C12a toolbox with sequenced genomes and antibiotic susceptibility tests for the blaCTX-M-15 and floR antibiotic resistance genes (ARGs), which confer resistance to cefotaxime and other β-lactams, and amphenicols, respectively. C12aINT, designed to detect the Integrase 1 gene, confirmed a high prevalence of the integrase/integron system in E. coli containing multiple ARGs. The C12a toolbox was tested across a wide range of laboratory infrastructure including a portable setup. When combined with lateral flow assays (LFA), C12a exhibited competitive performance, making it a promising solution for on-site ARG detection. Altogether, this work presents a collection of molecular tools (primers, crRNAs, probes) and validated assays for rapid, versatile, and portable detection of antibiotic resistance markers, highlighting the C12a toolbox potential for applications in surveillance and ARG identification in clinical and environmental settings.
Collapse
Affiliation(s)
- Maryhory Vargas-Reyes
- Biomolecules Laboratory, School of Biology, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Microbiología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Roberto Alcántara
- Biomolecules Laboratory, School of Biology, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Soraya Alfonsi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Katherin Peñaranda
- Biomolecules Laboratory, School of Biology, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Monica J. Pajuelo
- Laboratorio de Microbiología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pohl Milon
- Biomolecules Laboratory, School of Biology, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
2
|
ElFeky DS, Kassem AA, Moustafa MA, Assiri H, El-Mahdy AM. Suppression of virulence factors of uropathogenic Escherichia coli by Trans-resveratrol and design of nanoemulgel. BMC Microbiol 2024; 24:412. [PMID: 39415103 PMCID: PMC11484331 DOI: 10.1186/s12866-024-03538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Development of multidrug resistance in Uropathogenic Escherichia coli (UPEC) makes treatment of Urinary Tract Infections (UTIs) a major challenge. This study was conducted to investigate the effect of trans-resveratrol (t-RSV) at a subinhibitory concentration (sub-MIC-t-RSV) on phenotypic and genotypic expression of virulence factors of clinical isolates of UPEC and develop a nanoformulation of t-RSV. Fifty-five clinical UPEC strains were investigated for the presence of virulence factors by phenotypic methods and PCR detection of virulence genes. The effect of sub-MIC-t-RSV was studied on the phenotypic and genotypic expression of virulence factors. t-RSV-loaded nanoemulgel formulation was prepared and characterized. RESULTS Out of the 55 tested isolates, 50.9% were biofilm producers, 23.6% showed both mannose-sensitive and mannose-resistant hemagglutination, 21.8% were serum-resistant, 18.2% were hemolysin producers, while 36.4% showed cytotoxic effect on HEp-2 cells. A total of 25.5% of the isolates harbor one or more of hly-A, cnf-1 and papC genes, while 54.5% were positive for one or more of fimH, iss and BssS genes. A concentration of 100 µg/mL of t-RSV effectively downregulates the phenotypic and genotypic expression of the virulence factors in positive isolates. A stable t-RSV-nanaoemulgel with droplet size of 180.3 nm and Zetapotential of -46.9 mV was obtained. CONCLUSION The study proves the effective role of t-RSV as an antivirulence agent against clinical UPEC isolates in vitro and develops a stable t-RSV-nanoemulgel formulation to be assessed in vivo. The promising antibacterial and antivirulence properties of t-RSV place this natural compound to be a better alternative in the treatment of persistent UTIs.
Collapse
Affiliation(s)
- Dalia Saad ElFeky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona A Moustafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hanan Assiri
- Health Sciences Research center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Areej M El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Heidari A, Emami MH, Maghool F, Mohammadzadeh S, Kadkhodaei Elyaderani P, Safari T, Fahim A, Kamali Dolatabadi R. Molecular epidemiology, antibiotic resistance profile and frequency of integron 1 and 2 in adherent-invasive Escherichia coli isolates of colorectal cancer patients. Front Microbiol 2024; 15:1366719. [PMID: 38939191 PMCID: PMC11208319 DOI: 10.3389/fmicb.2024.1366719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study explores the prevalence of adherent-invasive Escherichia coli (AIEC) in colorectal cancer (CRC) patients and investigates the potential of effective intracellular antibiotics as a therapeutic strategy for CRC patients with AIEC infections. Considering the pivotal role of integrons in bacterial antibiotic resistance, the frequency of class 1 and 2 integrons in AIEC isolated from CRC patients, in one of the referenced 3 gastroenterology clinics in Isfahan, Iran was examined. AIEC strains were isolated from the colorectal biopsies and their antimicrobial sensitivity was assessed using the disc diffusion method. Polymerase chain reaction (PCR) was employed to detect intl1 and intl2. The multilocus sequence typing (MLST) method was utilized to type 10 selected isolates. Of the 150 samples, 24 were identified as AIEC, with the highest number isolated from CRC2 (33.4%) and CRC1 (29.16%), and the least from the FH group (8.3%) and control group (12.5%). int1 in 79.2% and int2 in 45.8% of AIEC strains were found and 41.6% of strains had both integrons. AIEC isolates with int1 exhibited the highest sensitivity to trimethoprim-sulfamethoxazole (57.9%), while those with int2 showed the highest sensitivity to ciprofloxacin (63.6%). A significant association between resistance to rifampin and integron 2 presence in AIEC isolates was observed. Furthermore, a significant correlation between integron 1 presence, invasion, survival, and replication within macrophages in AIEC strains was identified. MLST analysis revealed ST131 from CC131 with integron 1 as the most common sequence type (ST). The emergence of such strains in CRC populations poses a serious public health threat. The distribution pattern of STs varied among studied groups, with pandemic STs highlighting the importance of examining and treating patients infected with these isolates. Comprehensive prospective clinical investigations are warranted to assess the prognostic value of detecting this pathovar in CRC and to evaluate therapeutic techniques targeting drug-resistant AIECs, such as phage therapy, bacteriocins, and anti-adhesion compounds, for CRC prevention and treatment.
Collapse
Affiliation(s)
- Aida Heidari
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tahereh Safari
- Physiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razie Kamali Dolatabadi
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
4
|
Abbasi Z, Ghasemi SM, Ahmadi Y, Shokri D. Isolation and Identification of Effective Probiotics on Drug-Resistant Acinetobacter baumannii Strains and Their Biofilms. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8570521. [PMID: 38440403 PMCID: PMC10911883 DOI: 10.1155/2024/8570521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
Introduction This study aimed to identify, assess, and isolate strong lactobacilli demonstrating broad antibacterial and anti-biofilm activity against drug-resistant strains of Acinetobacter baumannii. Additionally, the mechanism of inhibition of these organisms was to be determined. Methods Over a 6-month period (from December 2021 to June 2022), 53 clinical A. baumannii strains were collected from clinical samples. Twenty probiotic strains were isolated from local dairy products. Antibacterial activity of Lactobacillus strains' cell-free supernatant (CFS) was identified using the agar well diffusion method and the microbroth dilution test. Anti-biofilm effect was performed by the microtiter plate assay. The MTT assay was also used to look into the probiotics' cytotoxic effects on the L929 fibroblast cell line. Results During the 6-month period, 53 clinical A. baumannii strains were obtained and identified. Out of 20 lactobacillus strains, the CFS of a lactobacillus strain (named L9) showed an inhibitory effect against all A. baumannii strains. Using the broth microdilution method, it was shown that the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of CFS extracts of L9 strains against A. baumannii strains were both ¼ mg/mL. The result of the anti-biofilm showed that the selected probiotic could inhibit biofilm formation. The most common organic acid produced by all Lactobacillus strains, according to the HPLC method, was lactic acid, which was followed by acetic acid. The L929 fibroblast cell line was used in the cytotoxicity assay, which revealed that 100% of the cells in the L929 fibroblast cell line survived treatment with successive doses of CFSs for a full day. Conclusion The probiotic strain isolated from local yogurt in this study showed potential anti-biofilm and antimicrobial properties against all drug-resistant Acinetobacter isolates. Given the increasing interest in probiotic microorganisms based on their high health benefits, further studies are recommended on the mechanisms of action between probiotics and A. baumannii strains to find new solutions for biological control and treatment of these infections without the use of antibiotics.
Collapse
Affiliation(s)
- Zahra Abbasi
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Seyed Mahdi Ghasemi
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Yasaman Ahmadi
- Department of Microbiology, Kish International Branch of Islamic Azad University, Kish, Iran
| | - Dariush Shokri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| |
Collapse
|
5
|
Pu L, Li G, Qi B, Li C, Bu P, Li Y, Xu Z, Bai Y, Yin D, Wang J, Xu Y. Prevalence and drug resistance of Escherichia coli among patients with orthopaedic surgical site infections in China: A systematic review and meta-analysis. Prev Med Rep 2023; 36:102452. [PMID: 37869538 PMCID: PMC10587526 DOI: 10.1016/j.pmedr.2023.102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
To summarize current prevalence and drug resistance rate of Escherichia coli (E. coli) among orthopaedic surgical site infections (SSIs) in China from English and Chinese language sources. Online databases were searched to collect related researches. A meta-analysis was performed to analyse prevalence and 95 % confidence interval (CI) of E. coli among patients with orthopedic surgical site infections. Meta-regression analysis was used to investigate the difference in the prevalence and antimicrobial resistance of E. coli among different subgroups. A total of 52 studies were enrolled into our meta-analysis, with a total of 31,285 strains isolated. The overall E. coli prevalence was 13.4 % (95 % CI 11.6-15.5). Study design (R2 = 8.98) and sample size (R2 = 10.95) might be potential sources of heterogeneity and there were no significant differences in risk of bias (R2 = 0.28), study time (R2 < 0.01), region (R2 = 2.46) and hospital level (R2 = 1.42). E. coli resistance were reported in 43 of the 52 papers. Antimicrobial resistance of E. coli to Ampicillin [87.9 % (95 % CI 83.7-91.1)] before 2015 was higher than that after 2015 [80.3 % (95 % CI 75.0-84.7)] (R2 = 30.93, P = 0.033). While, resistance rate to Cefepime and Amikacin was significantly higher before 2015 (R2 = 17.25 and 6.54, P = 0.043 and 0.048), i.e., 46.4 % (36.3-56.9), 19.9 % (13.8-27.7) and 29.1 % (19.4-41.2), 8.6 % (4.4-16.2) in 2015 and after. It is necessary to carry out long-term monitoring to understand the actual prevalence and antimicrobial resistance of E. coli to develop appropriate health care mechanisms.
Collapse
Affiliation(s)
- Luqiao Pu
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Gaoming Li
- Centers for Disease Prevention and Control of Central Theater Command of Chinese People's Liberation Army, Beijing 100042, China
| | - Baochuang Qi
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Chuan Li
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Pengfei Bu
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Yapin Li
- Centers for Disease Prevention and Control of Central Theater Command of Chinese People's Liberation Army, Beijing 100042, China
| | - Ze Xu
- Division of Medical Service, Zhengzhou Joint Logistic Support Center of Chinese People's Liberation Army, Zhengzhou 450000, China
| | - Yan Bai
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Dehong Yin
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| | - Jian Wang
- Centers for Disease Prevention and Control of Central Theater Command of Chinese People's Liberation Army, Beijing 100042, China
| | - Yongqing Xu
- 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming 650032, China
| |
Collapse
|
6
|
Hipólito A, García-Pastor L, Vergara E, Jové T, Escudero JA. Profile and resistance levels of 136 integron resistance genes. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:13. [PMID: 39843947 PMCID: PMC11721406 DOI: 10.1038/s44259-023-00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2025]
Abstract
Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone. Here we have generated a collection of 136 ARCs against 8 antibiotic families and disinfectants. Cassettes are cloned in a vector designed to mimic the genetic environment of a class 1 integron, and transformed in Escherichia coli. We have measured the minimal inhibitory concentration (MIC) to the most relevant molecules from each antibiotic family. With more than 500 MIC values, we provide an exhaustive and comparable quantitation of resistance conferred by ARCs. Our data confirm known resistance trends and profiles while revealing important differences among closely related genes. We have also detected genes that do not confer the expected resistance, to the point of challenging the role of the whole family of qac genes in resistance against disinfectants. Our work provides a detailed characterization of integron resistance genes at-a-glance.
Collapse
Affiliation(s)
- Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Macaluso JN. Hospital, Catheter, Peritoneal Dialysis Acquired Infections: Visible Light as a New Solution to Reduce Risk and Incidence. Cureus 2023; 15:e43043. [PMID: 37554377 PMCID: PMC10404650 DOI: 10.7759/cureus.43043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/10/2023] Open
Abstract
Healthcare-associated infections, often identified as hospital-acquired infections (HAIs), are typically not present during patient contact or admission. Healthcare-associated infections cause longer lengths of stay, increasing costs and mortality. HAI occurring in trauma patients increases the risk for length of stay and higher inpatient costs. Many HAIs are preventable. Antibiotic resistance has increased to a high level making proper treatment increasingly difficult due to organisms resistant to common antibiotics. Therefore, there is a need for alternate forms of attack against these pathogens. Currently, the application of light for the treatment of topical infections has been used. Ultraviolet (UV) light has well-documented antimicrobial properties. UV is damaging to DNA and causes the degradation of plastics, etc., so its use for medical purposes is limited. Using visible light may be more promising. 405-nm light sterilization has been shown to be highly efficacious in reducing bacteria. Light Line Medical, Inc.'s (LLM) patented visible-light platform technology for infection prevention may create a global shift in the prevention of healthcare-associated infections. LLM has developed a proprietary method of delivering light to prevent catheter-associated infections. This technology uses non-UV visible light and can kill both bacteria and prevent biofilm inside and outside a luminal catheter. This is significant as prevention is key. Independent analysis of the prototype system showed the application of the device met the acceptance criterion of 4 x 109-10 reduction in Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, and other bacteria and fungal species. Further design evolution for this technology continues, and the FDA submission process is underway.
Collapse
Affiliation(s)
- Joseph N Macaluso
- Endourology, LSU Health Foundation, New Orleans, USA
- Urology, LSU Health Center, New Orleans, USA
| |
Collapse
|
8
|
Bjerklund Johansen TE, Kulchavenya E, Lentz GM, Livermore DM, Nickel JC, Zhanel G, Bonkat G. Fosfomycin Trometamol for the Prevention of Infectious Complications After Prostate Biopsy: A Consensus Statement by an International Multidisciplinary Group. Eur Urol Focus 2022; 8:1483-1492. [PMID: 34920977 DOI: 10.1016/j.euf.2021.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Transrectal ultrasound-guided prostate biopsy (TRPB) has been a standard of care for diagnosing prostate cancer but is associated with a high incidence of infectious complications. OBJECTIVE To achieve an expert consensus on whether fosfomycin trometamol provides adequate prophylaxis in TRPB and discuss its role as prophylaxis in transperineal prostate biopsy (TPPB). EVIDENCE ACQUISITION An international multidisciplinary group of experts convened remotely to discuss how to best use fosfomycin in various clinical settings and patient situations. Six statements related to prostate biopsy and the role of fosfomycin were developed, based on literature searches and relevant clinical experience. EVIDENCE SYNTHESIS Consensus was reached for all six statements. The group of experts was unanimous regarding fosfomycin as a preferred candidate for antimicrobial prophylaxis in TRPB. Fosfomycin potentially also meets the requirements for empiric prophylaxis in TPPB, although further clinical studies are needed to confirm or refute its utility in this setting. There is a risk of bias due to sponsorship by a pharmaceutical company. CONCLUSIONS Antimicrobial prophylaxis is mandatory in TRPB, and fosfomycin trometamol is an appropriate candidate due to low rates of resistance, a good safety profile, sufficient prostate concentrations, and demonstrated efficacy in reducing the risk of infectious complications following TRPB. PATIENT SUMMARY Patients undergoing transrectal ultrasound-guided prostate biopsy (TRPB) have a high risk of infectious complications, and antimicrobial prophylaxis is mandatory. However, increasing antimicrobial resistance, as well as safety concerns with fluoroquinolones, has restricted the number of antimicrobial options. Fosfomycin trometamol meets the requirements for a preferred antimicrobial in the prophylaxis of TRPB.
Collapse
Affiliation(s)
- Truls E Bjerklund Johansen
- Department of Urology, Oslo University Hospital, Nydalen, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark.
| | - Ekaterina Kulchavenya
- Urogenital Department, Novosibirsk Research TB Institute and Novosibirsk Medical University, Novosibirsk, Russian Federation
| | - Gretchen M Lentz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | | | - J Curtis Nickel
- Department of Urology, Queens University, Kingston, ON, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Gernot Bonkat
- Department of Urology, alta uro AG, Basel, Switzerland
| |
Collapse
|
9
|
Molecular Characterization of Antibiotic Resistance and Genetic Diversity of Klebsiella pneumoniae Strains. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2156726. [PMID: 35774246 PMCID: PMC9239796 DOI: 10.1155/2022/2156726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
The aims of this study were the molecular characterization of antibiotic resistance and genotyping of Klebsiella pneumoniae strains isolated from clinical cases in Tehran, Iran. A total of 100 different types of clinical human samples were collected from a major teaching hospital in Tehran, Iran. Bacterial isolates were identified using standard microbiological tests. Antimicrobial susceptibility testing was done according to the latest CLSI guidelines. PCR was used to amplify the gyrA gene in quinolone-resistant isolates and sequencing was performed for the detection of probable mutations between the isolates. The occurrence of plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS) was also investigated by PCR. Finally, genotyping of the strains was performed by PFGE in a standard condition. The susceptibility pattern revealed a high and low level of resistance against meropenem (20%) and trimethoprim (37%), respectively. PCR and sequencing detected mutation in the gyrA gene in 51% of quinolone-resistant K. pneumoniae. According to the susceptibility report, among nalidixic acid-resistant strains, 60.5%, 50%, and 42.9% of isolates contained qnrA, qnrB, and qnrS, respectively. Among ciprofloxacin-resistant strains, qnrA was the most frequent PMQR gene. The PFGE differentiated the strains into 31 different genetic clusters so that the highest number (7/66) was in category A. Our results indicated that the frequency of resistance to various antibiotics particularly trimethoprim, nalidixic acid, and cefoxitin are increasing. The presence of qnr (S and A) genes and point mutation of the gyrA gene were likely to be responsible for the resistance toward nalidixic acid and ciprofloxacin in our strains. Also, the results obtained from genotyping indicated that the K. pneumoniae strains isolated in this study belonged to the diverse clones.
Collapse
|
10
|
Tutone M, Johansen TEB, Cai T, Mushtaq S, Livermore DM. SUsceptibility and Resistance to Fosfomycin and other antimicrobial agents among pathogens causing lower urinary tract infections: findings of the SURF study. Int J Antimicrob Agents 2022; 59:106574. [PMID: 35307561 DOI: 10.1016/j.ijantimicag.2022.106574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/05/2022]
|
11
|
Halaji M, Fayyazi A, Rajabnia M, Zare D, Pournajaf A, Ranjbar R. Phylogenetic Group Distribution of Uropathogenic Escherichia coli and Related Antimicrobial Resistance Pattern: A Meta-Analysis and Systematic Review. Front Cell Infect Microbiol 2022; 12:790184. [PMID: 35281449 PMCID: PMC8914322 DOI: 10.3389/fcimb.2022.790184] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
The phylogenetic classification of Escherichia coli isolates is of great importance not only for understanding the populations of E. coli but also for clarifying the relationship between strains and diseases. The present study aimed to evaluate the prevalence of phylogenetic groups, antibiotic susceptibility pattern, and virulence genes among uropathogenic E. coli (UPEC) isolated from different parts of Iran through a systematic review and meta-analysis. Several international electronic sources, including Web of Science, PubMed, Scopus, and Embase, were searched (2000–2020) in order to identify the studies compatible with our inclusion criteria. The meta-analysis was performed using the metaprop program in the STATA (version 11) software. Based on our comprehensive search, 28 studies meeting the eligibility criteria were included in the meta-analysis. The pooled prevalence of phylogroups B2, D, B1, and A was 39%, 26%, 18%, and 8%, respectively. In addition, there was a significant heterogeneity among different phylogroups. However, according to the results of Begg’s and Egger’s tests, there were no significant publication bias in phylogroups B2, D, B1, and A. This research provided the first comprehensive study on phylogroups of UPEC isolated in Iran. Our findings indicated that phylogroup B2 and group D were the most predominant phylogenetic groups among UPEC isolates in various regions of Iran. In addition, we observed that certain phylogenetic groups are more antibiotic resistant than the others. It was also observed that the dissemination of virulent phylogroup B2 and D should be controlled via comprehensive infection control measures. Additionally, certain strategies should be developed for monitoring the antibiotic therapy.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Fayyazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Donya Zare
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Reza Ranjbar,
| |
Collapse
|
12
|
Lu W, Qiu Q, Chen K, Zhao R, Li Q, Wu Q. Distribution and Molecular Characterization of Functional Class 2 Integrons in Clinical Proteus mirabilis Isolates. Infect Drug Resist 2022; 15:465-474. [PMID: 35210790 PMCID: PMC8858760 DOI: 10.2147/idr.s347119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Integrons are the main mode of horizontal transmission of drug-resistance genes and are closely related to drug resistance in clinical bacteria. In this study, the distributions of class 1, 2, and 3 integron gene cassettes were investigated in 150 Proteus mirabilis (P. mirabilis) isolates from patients, and molecular characterization of functional class 2 integrons was further analyzed. Methods Class 1, 2, and 3 integrons were screened by polymerase chain reaction (PCR) in 150 clinical P. mirabilis isolates. The variable regions of the integrons were determined by restriction analysis and sequencing. Internal stop codons mutations in class 2 integrons and their common promoters were also determined by sequencing. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) was used to analyze the phylogenetic relations of class 2 integron-positive isolates. Results Class 1 integrons were detected in 69 (46%) of 150 P. mirabilis isolates, and six different gene cassette arrays were detected, with the most prevalent being dfrA32-aadA2. Class 2 integrons were detected in 61 (40.7%) of 150 P. mirabilis isolates, and three different gene cassette arrays were detected, including sat2-aadA1, which was detected for the first time in a class 2 integron. Nearly similar ERIC-PCR fingerprinting patterns were detected in 45 (73.8%) of 61 class 2 integron-positive isolates. The functional class 2 integron was detected in three P. mirabilis isolates having the same gene cassette, dfrA1-sat2-aadA1, in the variable region and four novel open reading frames with unknown functions. Same PintI2 and Pc promoters were detected in these three functional class 2 integron isolates, as was found in other class 2 integron isolates. However, these three strains did not totally show identical homology and drug sensitivity. Conclusion Although functional class 2 integrons have low distribution and relatively conserved molecular characteristics, they can still form clinical dissemination and drug resistance expression.
Collapse
Affiliation(s)
- Wenjun Lu
- Intensive Care Units of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Quedan Qiu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Keda Chen
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qingcao Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
- Correspondence: Qingcao Li; Qiaoping Wu, Tel +86-574-55835786, Fax +86-574-55835781, Email ;
| | - Qiaoping Wu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Antimicrobial susceptibility and molecular characterization of Salmonella enterica serovar Indiana from foods, patients, and environments in China during 2007–2016. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Malekzadegan Y, Amanati A, Bazargani A, Ramzi M, Motamedifar M. Fecal colonization, phenotypic and genotypic characterization of ESBL-producing Escherichia coli isolates in transplant patients in Shiraz Nemazee and Abu Ali Sina Hospitals. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sadeghi H, Khoei SG, Bakht M, Rostamani M, Rahimi S, Ghaemi M, Mirzaei B. A retrospective cross-sectional survey on nosocomial bacterial infections and their antimicrobial susceptibility patterns in hospitalized patients in northwest of Iran. BMC Res Notes 2021; 14:88. [PMID: 33750469 PMCID: PMC7941966 DOI: 10.1186/s13104-021-05503-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
Objective Nosocomial infections (NIs) are known as one of the remarkable problems in all countries. This study is aimed to estimate the prevalence rate of nosocomial bacterial agents with antimicrobial susceptibility pattern in hospitalized patients. This study was conducted from April 2017 to September 2018, on 4029 hospitalized patients. We set out to recognize the commonest bacterial infections and antimicrobial susceptibility patterns of nosocomial infection. Results Of the 4029 patients, 509 (12.6%) of them were culture positive. Of these Escherichia coli (E. coli) (98.3%) and Staphylococcus epidermidis (S. epidermidis) (37.5%) were the most abundant bacterial identified in the urinary tract and bloodstream cultures respectively, Moreover, Acinetobacter spp. (100%) and Pseudomonas aeruginosa (22.2%) were the most abundant organisms detected in the respiratory system. According to susceptibility testing results, 370 (80.5%) and 264 (57.3%) in Gram-negatives and 44 (91.7%) and 35 (72.9%) in gram positives isolated strains were classified as multidrug-resistant (MDR) and extensive drug-resistant (XDR) strain respectively. On account of the high prevalence of MDR and XDR bacterial species, there is a pressing need for the expansion of new strategies on antibiotic supervision and infection control to introduce new guideline on empirical antibiotic therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05503-0.
Collapse
Affiliation(s)
- Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mehdi Bakht
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Rostamani
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Rahimi
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Ghaemi
- Department of Anesthesiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Mirzaei
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran. .,Department of Microbiology and Virology, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| |
Collapse
|
16
|
Souque C, Escudero JA, MacLean RC. Integron activity accelerates the evolution of antibiotic resistance. eLife 2021; 10:62474. [PMID: 33634790 PMCID: PMC8024014 DOI: 10.7554/elife.62474] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mobile integrons are widespread genetic platforms that allow bacteria to modulate the expression of antibiotic resistance cassettes by shuffling their position from a common promoter. Antibiotic stress induces the expression of an integrase that excises and integrates cassettes, and this unique recombination and expression system is thought to allow bacteria to 'evolve on demand' in response to antibiotic pressure. To test this hypothesis, we inserted a custom three-cassette integron into Pseudomonas aeruginosa and used experimental evolution to measure the impact of integrase activity on adaptation to gentamicin. Crucially, integrase activity accelerated evolution by increasing the expression of a gentamicin resistance cassette through duplications and by eliminating redundant cassettes. Importantly, we found no evidence of deleterious off-target effects of integrase activity. In summary, integrons accelerate resistance evolution by rapidly generating combinatorial variation in cassette composition while maintaining genomic integrity.
Collapse
Affiliation(s)
- Célia Souque
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| | - José Antonio Escudero
- University of Oxford, Department of Zoology, Oxford, United Kingdom.,Universidad Complutense de Madrid, Departamento de Sanidad Animal and VISAVET, Madrid, Spain
| | - R Craig MacLean
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| |
Collapse
|
17
|
Zhong ZX, Cui ZH, Li XJ, Tang T, Zheng ZJ, Ni WN, Fang LX, Zhou YF, Yu Y, Liu YH, Liao XP, Sun J. Nitrofurantoin Combined With Amikacin: A Promising Alternative Strategy for Combating MDR Uropathogenic Escherichia coli. Front Cell Infect Microbiol 2020; 10:608547. [PMID: 33409159 PMCID: PMC7779487 DOI: 10.3389/fcimb.2020.608547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Urinary tract infections (UTI) are common infections that can be mild to life threatening. However, increased bacterial resistance and poor patient compliance rates have limited the effectiveness of conventional antibiotic therapies. Here, we investigated the relationship between nitrofurantoin and amikacin against 12 clinical MDR uropathogenic Escherichia coli (UPEC) strains both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in all 12 test strains by standard checkerboard and time-kill assays. Importantly, amikacin or nitrofurantoin at half of the clinical doses were not effective in the treatment of UPEC infections in the G. mellonella model but the combination therapy significantly increased G. mellonella survival from infections caused by all 12 study UPEC strains. Taken together, these results demonstrated synergy effects between nitrofurantoin and amikacin against MDR UPEC.
Collapse
Affiliation(s)
- Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Jie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei-Na Ni
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Fayyazi A, Halaji M, Sadeghi A, Havaei SA. High frequency of integrons and efflux pump in Uropathogenic Escherichia coli isolated from Iranian kidney and non-kidney transplant patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Characterization of Plasmid-Mediated Quinolone Resistance and Serogroup Distributions of Uropathogenic Escherichia coli among Iranian Kidney Transplant Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2850183. [PMID: 33195692 PMCID: PMC7641683 DOI: 10.1155/2020/2850183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
Introduction Urinary tract infection (UTI) is one of the most frequent infections in kidney transplant patients (KTPs). This infection is mainly caused by uropathogenic Escherichia coli (UPEC). Plasmid-mediated quinolone resistance (PMQR) was also increasingly identified in UPEC. This study proposed to investigate the frequency of quinolone-resistance plasmid genes and the O-antigen serogroup among UPEC isolated from KTPs and non-KTP with UTI. Methods Totally, 114 UPEC isolates from 49 KTPs and 65 non-KTPs patients diagnosed with an UPEC-associated UTI were obtained from June 2019 to December 2019 at three laboratory centers in Isfahan, Iran. The isolates were confirmed through phenotypic and genotypic methods. Moreover, the antimicrobial susceptibility test to nalidixic acid, ciprofloxacin, norfloxacin, and ofloxacin was performed using a disk diffusion method. The presence of the qnr gene as well as the serogroup distribution was identified using the PCR method. Result According to data, the distribution of O1, O2, O4, O16, and O25 serogroups were 3.5%, 2.6, 3.5, 3.5, and 20.2%, respectively. Antibiotic susceptibility pattern revealed that the highest and lowest resistance rates were to nalidixic acid (69.3%) and norfloxacin (43.9%), respectively. Also, the frequency of qnrS and qnrB genes were 33.3% and 15.8%, respectively, while none of the isolates was found to be positive for the qnrA gene. There was no significant association between the presence of qnr genes and higher antibiotic resistance. Conclusion This study recognized that the qnrS gene, O25 serotype, and resistance to nalidixic acid had the highest frequencies in UPEC strains isolated from UTI patients.
Collapse
|