1
|
Darmasiwi S, Aramsirirujiwet Y, Kimkong I. Antibiofilm activity and bioactive phenolic compounds of ethanol extract from the Hericium erinaceus basidiome. J Adv Pharm Technol Res 2022; 13:111-116. [PMID: 35464662 PMCID: PMC9022366 DOI: 10.4103/japtr.japtr_1_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Biofilm formation has become a serious health and environmental problem. Mushrooms are now considered a valuable source of bioactive compounds with antimicrobial properties. The lion's mane mushroom (Hericium erinaceus [HE]) has been used as an antimicrobial for ulcers and gastritis in East Asian countries. However, studies on the antibiofilm activities of HE basidiome against biofilm-forming pathogenic bacteria and their bioactive compound profiles are still limited. The purpose of this study was to determine the antibiofilm activity of HE and to identify its phenolic compound profile. The HE inhibitory activities against bacterial growth and biofilm formation were performed against Pseudomonas aeruginosa, Salmonella Typhimurium, Proteus mirabilis, and Staphylococcus aureus. Remarkably, P. mirabilis was the most susceptible bacteria to HE. The total phenolic content (TPC) of HE was 1652 ± 1.06 µg/ml, with protocatechuic acid and p-coumaric acid being the most abundant phenolic compounds as determined by high-performance liquid chromatography-mass spectrophotometry (HPLC-MS). This research highlights the possibility of HE as an antibiofilm agent that can be developed as a nutraceutical and natural food preservative.
Collapse
Affiliation(s)
- Sari Darmasiwi
- Department of Microbiology, Faculty of Science, Kasetsart University, Yogyakarta, Indonesia.,Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Yogyakarta, Indonesia.,Center for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
2
|
Zhang Y, Liu K, Zhang Z, Tian S, Liu M, Li X, Han Y, Zhu K, Liu H, Yang C, Liu H, Du X, Wang Q, Wang H, Yang M, Wang L, Song H, Yang H, Xiang Y, Qiu S. A Severe Gastroenteritis Outbreak of Salmonella enterica Serovar Enteritidis Linked to Contaminated Egg Fried Rice, China, 2021. Front Microbiol 2021; 12:779749. [PMID: 34880847 PMCID: PMC8645860 DOI: 10.3389/fmicb.2021.779749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/22/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonella contamination of eggs and egg shells has been identified as a public health problem worldwide. Here, we reported an outbreak of severe gastrointestinal symptoms caused by Salmonella enterica serovar Enteritidis (S. enteritidis) in China. We evaluated the outbreak by using epidemiological surveys, routine laboratory testing methods, and whole genome sequencing (WGS). This outbreak occurred in a canteen in Beijing, during March 9–11, 2021, 225 of the 324 diners who have eaten at the canteen showed gastrointestinal symptoms. The outbreak had characteristical epidemiological and clinical features. It caused a very high attack rate (69.4%) in a short incubation time. All patients developed diarrhea and high fever, accompanied by abdominal pain (62.3%), nausea (50.4%), and vomiting (62.7%). The average frequency of diarrhea was 12.4 times/day, and the highest frequency of diarrhea was as high as 50 times/day. The average fever temperature was 39.4°C, and the highest fever temperature was 42°C. Twenty strains of S. enteritidis were recovered, including 19 from the patients samples, and one from remained egg fried rice. Antibiotic susceptibility test showed that the 20 outbreak strains all had the same resistance pattern. PFGE results demonstrated that all 20 strains bore completely identical bands. Phylogenetic analysis based on WGS revealed that all 20 outbreak strains were tightly clustered together. So the pathogenic source of this food poisoning incident may was contaminated egg fried rice. Resistance gene analysis showed that the outbreak strains are all multi-drug resistant strains. Virulence gene analysis indicated that these outbreak strains carried a large number of virulence genes, including 2 types of Salmonella pathogenicity islands (SPI-1 and SPI-2). Other important virulence genes were also carried by the outbreak strains, such as pefABCD, rck and shdA. And the shdA gene was not in other strains located in the same evolutionary branch as the outbreak strain. We speculated that this is a significant reason for the serious symptoms of gastroenteritis in this outbreak. This outbreak caused by S. enteritidis suggested government should strengthen monitoring of the prevalence of outbreak clone strains, and take measures to mitigate the public health threat posed by contaminated eggs.
Collapse
Affiliation(s)
- Yaowen Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kangkang Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhenbiao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meiling Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinge Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yiran Han
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kunpeng Zhu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Mingjuan Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Haiyan Yang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ying Xiang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Rana K, Nayak SR, Bihary A, Sahoo AK, Mohanty KC, Palo SK, Sahoo D, Pati S, Dash P. Association of quorum sensing and biofilm formation with Salmonella virulence: story beyond gathering and cross-talk. Arch Microbiol 2021; 203:5887-5897. [PMID: 34586468 DOI: 10.1007/s00203-021-02594-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Enteric fever (typhoid and paratyphoid fever) is a public health concern which contributes to mortality and morbidity all around the globe. It is caused mainly due to ingestion of contaminated food and water with a gram negative, rod-shaped, flagellated bacterium known as Salmonella enterica serotype typhi (typhoid fever) or paratyphi (paratyphoid fever). Clinical problems associated with Salmonellosis are mainly bacteraemia, gastroenteritis and enteric fever. The bacteria undergo various mechanisms to escape itself from immune reaction of the host, modulating immune response at the site of infection leading to virulence factor production and anti-microbial resistance. Biofilm is one of the adaptation mechanisms through which Salmonella survives in unfavourable conditions and thus is considered as a major threat to public health. Another property of the bacteria is "Quorum Sensing", which is a cell-cell communication and most of the pathogenic bacteria use it to coordinate the production of several virulence factors and other behaviours such as swarming and biofilm formation. Earlier, quorum sensing was believed to be just a medium for communication but, later on, its role in virulence has been studied. However, there are negligible information relating to interaction between quorum sensing and biofilm formation and how these events play crucial role in Salmonella pathogenesis. The review is a summary of updated information regarding how Salmonella uses these properties to spread more and survive better, making a challenge for clinicians and public health experts. Therefore, this review would help bring an insight regarding how biofilm formation and quorum sensing are inter-related and their role in pathogenesis and virulence of Salmonella.
Collapse
Affiliation(s)
- Khokan Rana
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | | | - Alice Bihary
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Ajay Ku Sahoo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | | | - Subrata Ku Palo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Debadutta Sahoo
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India.
| | - Pujarini Dash
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India.
| |
Collapse
|