1
|
Liu L, Huang Y, Wang Y, Jiang Y, Liu K, Pei Z, Li Z, Zhu Y, Liu D, Li X. Molecular Epidemiology and Genetic Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates from the ICU of a Tertiary Hospital in East China. Infect Drug Resist 2024; 17:5925-5945. [PMID: 39759767 PMCID: PMC11699857 DOI: 10.2147/idr.s491858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant Acinetobacter baumannii (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB. Methods A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS. Results All CRAB strains were 100% resistant to ciprofloxacin, ceftazidime, piperacillin/tazobactam, and ticarcillin/clavulanic acid. A total of 48 antimicrobial resistance genes (ARGs) were found in the 39 CRAB strains, including blaOXA-66, blaOXA-23, blaADC-30, blaADC-73, gyrA, ant(3″)-IIa, aph(3″)-Ib, aph(6)-Id, tetB, tetR, sul1, sul2, LpxC and LpxA which confered resistance to carbapenems, cephalosporins, fluoroquinolones, aminoglycosides, tetracycline and sulfonamides. There were 128 VFGs, including genes encoding the AdeFGH efflux pump, lipopolysaccharide (LpsBLC), outer membrane protein A (OmpA), penicillin-binding protein (PbpG), biofilm-associated proteins (bap, pgaBCD, CsuABCDE), type VI secretion system protein (Tss), quorum sensing protein (AbaI/AbaR). Six clonal lineages were identified by Oxford MLST method, whereas one sequence type (ST2) was identified using the Pasteur MLST method. ANI analysis, heat map of SNP analysis, and phylogenetic tree based on core SNP revealed six clusters, and the strain classification results were consistent with these different methods. Ten clonal lineages were identified by cgMLST. Conclusion The CRAB strains were ST2 clones accompanied by severe resistance to commonly used antibiotics and abundant ARGs and VFGs in genotype. Strict measures should be implemented to prevent and control transmissions and infections. CgMLST and SNPs analyses showed excellent discriminatory power in homology analysis.
Collapse
Affiliation(s)
- Lili Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuan Huang
- Department of Science and Education, Anqing Municipal Hospital, Anqing City, Anhui Province, People’s Republic of China
| | - Yaping Wang
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yunlan Jiang
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Kang Liu
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhongxia Pei
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhiping Li
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuqiong Zhu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Dan Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Xiaoyue Li
- Subdean Office, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| |
Collapse
|
2
|
He Z, Huang Y, Li W, Zhang H, Cao R, Ali MR, Dai Y, Lu H, Wang W, Niu Q, Sun B, Li Y. Characterization and genomic analysis of the highly virulent Acinetobacter baumannii ST1791 strain dominating in Anhui, China. Antimicrob Agents Chemother 2024:e0126224. [PMID: 39641569 DOI: 10.1128/aac.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The multidrug-resistant Acinetobacter baumannii clonal complex 92 is spreading worldwide due to its high-frequency gene mutation and recombination, posing a significant threat to global medical and health safety. Between November 2021 and April 2022, a total of 132 clinical A. baumannii isolates were collected from a tertiary hospital in China. Their growth ability and virulence of these isolates were assessed using growth curve analyses and the Galleria mellonella infection model. The genetic characteristics of the isolates were further examined through whole-genome sequencing. ST1791O/ST2P isolates represented the largest proportion of isolates in our collection and exhibited the highest growth rate and strongest virulence among all sequence types (STs) analyzed. Whole-genome sequences from 14,159 clinical isolates were collected from the National Center for Biotechnology Information database, and only nine ST1791O/ST2P isolates were detected. Comparative genomic analysis revealed that ST1791O/ST2P carried 11 unique genes, 5 of which were located within the capsular polysaccharide synthesis (cps) gene cluster. Single nucleotide polymorphisms (SNPs) between ST1791O/ST2P and other isolates were primarily found in the cps gene cluster. Among the other isolates, ST195O/ST2P and ST208O/ST2P exhibited the smallest SNP differences from ST1791O/ST2P, while ST195O/ST2P and ST1486O/ST2P had high homology. The ST1791O/ST2P strain in Anhui, China, displayed significant homology with ST195O/ST2P, ST208O/ST2P, and ST1486O/ST2P isolates. Compared to other isolates in this study, ST1791O/ST2P exhibited strong growth ability and virulence. Therefore, preventing the further spread of ST1791O/ST2P should be a top public health priority.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Md Roushan Ali
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanying Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuhong Niu
- School of Life Science, Nanyang Normal University, Nanyang, Henan, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Jia H, Li X, Zhuang Y, Wu Y, Shi S, Sun Q, He F, Liang S, Wang J, Draz MS, Xie X, Zhang J, Yang Q, Ruan Z. Neural network-based predictions of antimicrobial resistance phenotypes in multidrug-resistant Acinetobacter baumannii from whole genome sequencing and gene expression. Antimicrob Agents Chemother 2024; 68:e0144624. [PMID: 39540735 PMCID: PMC11619347 DOI: 10.1128/aac.01446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Whole genome sequencing (WGS) potentially represents a rapid approach for antimicrobial resistance genotype-to-phenotype prediction. However, the challenge still exists to predict fully minimum inhibitory concentrations (MICs) and antimicrobial susceptibility phenotypes based on WGS data. This study aimed to establish an artificial intelligence-based computational approach in predicting antimicrobial susceptibilities of multidrug-resistant Acinetobacter baumannii from WGS and gene expression data. Antimicrobial susceptibility testing (AST) was performed using the broth microdilution method for 10 antimicrobial agents. In silico multilocus sequence typing (MLST), antimicrobial resistance genes, and phylogeny based on cgSNP and cgMLST strategies were analyzed. High-throughput qPCR was performed to measure the expression level of antimicrobial resistance (AMR) genes. Most isolates exhibited a high level of resistance to most of the tested antimicrobial agents, with the majority belonging to the IC2/CC92 lineage. Phylogenetic analysis revealed undetected transmission events or local outbreaks. The percentage agreements between AMR phenotype and genotype ranged from 70.08% to 89.96%, with the coefficient of agreement (κ) extending from 0.025 and 0.881. The prediction of AST employed by deep neural network models achieved an accuracy of up to 98.64% on the testing data set. Additionally, several linear regression models demonstrated high prediction accuracy, reaching up to 86.15% within an error range of one gradient, indicating a linear relationship between certain gene expressions and the corresponding antimicrobial MICs. In conclusion, neural network-based predictions could be used as a tool for the surveillance of antimicrobial resistance in multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Xinyang Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yilu Zhuang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Shasha Shi
- Department of Laboratory Medicine, Wuyi First People’s Hospital, Jinhua, China
| | - Qingyang Sun
- Department of Clinical Laboratory, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Fang He
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shanyan Liang
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, China
| | - Jianfeng Wang
- Department of Respiratory and Critical Care Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Jean SS, Liu CY, Huang TY, Lai CC, Liu IM, Hsieh PC, Hsueh PR. Potentially effective antimicrobial treatment for pneumonia caused by isolates of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii complex species: what can we expect in the future? Expert Rev Anti Infect Ther 2024; 22:1171-1187. [PMID: 39381911 DOI: 10.1080/14787210.2024.2412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the β-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chia-Ying Liu
- Department of Infectious Diseases and Department of Hospitalist, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Huang
- Department of Pharmacy, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Bulens SN, Campbell D, McKay SL, Vlachos N, Burgin A, Burroughs M, Padila J, Grass JE, Jacob JT, Smith G, Muleta DB, Maloney M, Macierowski B, Wilson LE, Vaeth E, Lynfield R, O'Malley S, Snippes Vagnone PM, Dale J, Janelle SJ, Czaja CA, Johnson H, Phipps EC, Flores KG, Dumyati G, Tsay R, Beldavs ZG, Maureen Cassidy P, Hall A, Walters MS, Guh AY, Magill SS, Lutgring JD. Carbapenem-resistant Acinetobacter baumannii complex in the United States-An epidemiological and molecular description of isolates collected through the Emerging Infections Program, 2019. Am J Infect Control 2024; 52:1035-1042. [PMID: 38692307 DOI: 10.1016/j.ajic.2024.04.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step toward informing better infection prevention and control practices and improving public health response. METHODS Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1 to December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.
Collapse
Affiliation(s)
| | | | | | | | - Alex Burgin
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | | | - Jesse T Jacob
- Georgia Emerging Infections Program, Decatur, GA; Emory University School of Medicine, Atlanta, GA
| | - Gillian Smith
- Georgia Emerging Infections Program, Decatur, GA; Emory University School of Medicine, Atlanta, GA; Atlanta Veterans Affairs Medical Center, Decatur, GA
| | | | | | | | - Lucy E Wilson
- Maryland Department of Health, Baltimore, MD; University of Maryland Baltimore County, Baltimore, MD
| | | | | | | | | | | | - Sarah J Janelle
- Colorado Department of Public Health and Environment, Denver, CO
| | | | - Helen Johnson
- Colorado Department of Public Health and Environment, Denver, CO
| | - Erin C Phipps
- University of New Mexico, Albuquerque, NM; New Mexico Emerging Infections Program, Santa Fe, NM
| | - Kristina G Flores
- University of New Mexico, Albuquerque, NM; New Mexico Emerging Infections Program, Santa Fe, NM
| | | | - Rebecca Tsay
- University of Rochester Medical Center, Rochester, NY
| | | | | | - Amanda Hall
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Alice Y Guh
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | |
Collapse
|
6
|
Graffice E, Moates DB, Leal SM, Amerson-Brown M, Calix JJ. Epidemiological, Phylogenetic, and Resistance Heterogeneity Among Acinetobacter baumannii in a Large U.S. Deep South Healthcare system. Open Forum Infect Dis 2024; 11:ofae458. [PMID: 39229284 PMCID: PMC11370794 DOI: 10.1093/ofid/ofae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Background Acinetobacter baumannii (Ab) disease in the United States is commonly attributed to outbreaks of 1 or 2 monophyletic carbapenem resistance (CR) Ab lineages that vary by region. However, there is limited knowledge regarding CRAb epidemiology and population structures in the U.S. Deep South, and few studies compare contemporary CR and carbapenem-susceptible (Cs) Ab, despite relative prevalence of the latter. Methods We performed a multiyear analysis of 2462 Ab cases in a large healthcare system in Birmingham, AL, and 89 post-2021 Ab isolates were sequenced and phenotyped by antibiotic susceptibility tests. Results Although the cumulative CR rate was 17.7% in our cohort, rates regularly increased in winter months as result of seasonal changes in case incidence of CsAb, specifically. Genotyped CRAb belonged to clonal group (CG) 1, CG2, CG108, CG250, or CG499, with local clones of CG108, CG250, and CG499 persisting over multiple months. There was no clonal expansion of any CsAb lineage. Among CRAb isolates, levels of β-lactam antibiotic resistance and the repertoire of related genetic resistance determinants, which included the novel CR-conferring FtsI A515V polymorphism, differed according to CG. CG108 and CG499 isolates displayed specific heteroresistance to sulbactam and trimethoprim/sulfamethoxazole, respectively, which resulted in discrepant susceptibility results in microbroth versus agar-based antibiotic susceptibility tests modalities. Conclusions We report an unusually high degree of CRAb phylogenetic diversity principally driven by emergent U.S. lineages harboring novel resistance elements that must be incorporated into diagnostic, surveillance, and preclinical research efforts.
Collapse
Affiliation(s)
- Emma Graffice
- Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Derek B Moates
- Department of Pathology, Division of Laboratory Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sixto M Leal
- Department of Pathology, Division of Laboratory Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megan Amerson-Brown
- Department of Pathology, Division of Laboratory Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan J Calix
- Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Huang X, Ning N, Li D, Chen S, Zhang L, Wang H, Bao C, Yang X, Li B, Wang H. Molecular epidemiology of Acinetobacter baumannii during COVID-19 at a hospital in northern China. Ann Clin Microbiol Antimicrob 2024; 23:63. [PMID: 39026334 PMCID: PMC11264759 DOI: 10.1186/s12941-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The wide spread of carbapenem-resistance clones of Acinetobacter baumannii has made it a global public problem. Some studies have shown that the prevalence of Acinetobacter baumannii clones can change over time. However, few studies with respect to the change of epidemiological clones in Acinetobacter baumannii during Corona Virus Disease 2019 (COVID-19) were reported. This study aims to investigate the molecular epidemiology and resistance mechanisms of Acinetobacter baumannii during COVID-19. RESULTS A total of 95 non-replicated Acinetobacter baumannii isolates were enrolled in this study, of which 60.0% (n = 57) were identified as carbapenem-resistant Acinetobacter baumannii (CRAB). The positive rate of the blaOXA-23 gene in CRAB isolates was 100%. A total of 28 Oxford sequence types (STs) were identified, of which the most prevalent STs were ST540 (n = 13, 13.7%), ST469 (n = 13, 13.7%), ST373 (n = 8, 8.4%), ST938 (n = 7, 7.4%) and ST208 (n = 6, 6.3%). Differently, the most widespread clone of Acinetobacter baumannii in China during COVID-19 was ST208 (22.1%). Further study of multidrug-resistant ST540 showed that all of them were carrying blaOXA-23, blaOXA-66, blaADC-25 and blaTEM-1D, simultaneously, and first detected Tn2009 in ST540. The blaOXA-23 gene was located on transposons Tn2006 or Tn2009. In addition, the ST540 strain also contains a drug-resistant plasmid with msr(E), armA, sul1 and mph(E) genes. CONCLUSION The prevalent clones of Acinetobacter baumannii in our organization have changed during COVID-19, which was different from that of China. ST540 strains which carried multiple drug-resistant mobile elements was spreading, indicating that it is essential to strengthen the molecular epidemiology of Acinetobacter baumannii.
Collapse
Affiliation(s)
- Xinlin Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China
- Department of Clinical Laboratory, the Fifth Medical Center, Chinese Peoples's Liberation Army (PLA) General Hospital, No. 100 Western 4th Middle Ring Road, Beijing, 100039, China
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Deyu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Suming Chen
- Department of Clinical Laboratory, the Fifth Medical Center, Chinese Peoples's Liberation Army (PLA) General Hospital, No. 100 Western 4th Middle Ring Road, Beijing, 100039, China
| | - Liangyan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Huan Wang
- Department of Clinical Laboratory, the Fifth Medical Center, Chinese Peoples's Liberation Army (PLA) General Hospital, No. 100 Western 4th Middle Ring Road, Beijing, 100039, China
| | - Chunmei Bao
- Department of Clinical Laboratory, the Fifth Medical Center, Chinese Peoples's Liberation Army (PLA) General Hospital, No. 100 Western 4th Middle Ring Road, Beijing, 100039, China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China
| | - Boan Li
- Department of Clinical Laboratory, the Fifth Medical Center, Chinese Peoples's Liberation Army (PLA) General Hospital, No. 100 Western 4th Middle Ring Road, Beijing, 100039, China.
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, China.
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
8
|
Marusinec R, Shemsu M, Lloyd T, Kober BM, Heaton DT, Herrera JA, Gregory M, Varghese V, Nadle J, Trivedi KK. Epidemiology of carbapenem-resistant organisms in Alameda County, California, 2019-2021. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e64. [PMID: 38698944 PMCID: PMC11062789 DOI: 10.1017/ash.2024.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 05/05/2024]
Abstract
Objective Carbapenem-resistant organisms (CROs) are an urgent health threat. Since 2017, Alameda County Health Public Health Department (ACPHD) mandates reporting of carbapenem-resistant Enterobacterales (CRE) and encourages voluntary reporting of non-CRE CROs including carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Surveillance data from ACPHD were analyzed to describe the epidemiology of CROs and target public health interventions. Methods Healthcare facilities in Alameda County reported CRO cases and submitted isolates to ACPHD to characterize carbapenemase genes; deaths were identified via the California Electronic Death Registration System. CRO cases with isolates resistant to one or more carbapenems were analyzed from surveillance data from July 2019 to June 2021. Results Four hundred and forty-two cases of CROs were reported to Alameda County from 408 patients. The county case rate for CROs was 29 cases per 100,000 population, and cases significantly increased over the 2-year period. CRPA was most commonly reported (157 cases, 36%), and cases of CRAB increased 1.83-fold. One-hundred eighty-six (42%) cases were identified among residents of long-term care facilities; 152 (37%) patients had died by January 2022. One hundred and seven (24%) cases produced carbapenemases. Conclusions The high burden of CROs in Alameda County highlights the need for continued partnership on reporting, testing, and infection prevention to limit the spread of resistant organisms. A large proportion of cases were identified in vulnerable long-term care residents, and CRAB was an emerging CRO among this population. Screening for CROs and surveillance at the local level are important to understand epidemiology and implement public health interventions.
Collapse
Affiliation(s)
- Rachel Marusinec
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Munira Shemsu
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Tyler Lloyd
- Alameda County Health, Public Health Department, Public Health Laboratory, Oakland, CA, USA
| | - Brendan M. Kober
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Dustin T. Heaton
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Jade A. Herrera
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Misha Gregory
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| | - Vici Varghese
- Alameda County Health, Public Health Department, Public Health Laboratory, Oakland, CA, USA
| | - Joelle Nadle
- California Emerging Infections Program, Oakland, CA, USA
| | - Kavita K. Trivedi
- Alameda County Health, Public Health Department, Division of Communicable Disease Control and Prevention, San Leandro, CA, USA
| |
Collapse
|
9
|
Soria-Segarra C, Soria-Segarra C, Molina-Matute M, Agreda-Orellana I, Núñez-Quezada T, Cevallos-Apolo K, Miranda-Ayala M, Salazar-Tamayo G, Galarza-Herrera M, Vega-Hall V, Villacis JE, Gutiérrez-Fernández J. Molecular epidemiology of carbapenem-resistant gram-negative bacilli in Ecuador. BMC Infect Dis 2024; 24:378. [PMID: 38582858 PMCID: PMC10998298 DOI: 10.1186/s12879-024-09248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.
Collapse
Affiliation(s)
- Claudia Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador.
- Faculty of Medical Sciences, Guayaquil University, Guayaquil, Ecuador.
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain.
| | - Carmen Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador
- Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Tamara Núñez-Quezada
- Hospital del Instituto Ecuatoriano de Seguridad Social Dr. Teodoro Maldonado Carbo, Guayaquil, Ecuador
| | - Kerly Cevallos-Apolo
- Hospital de Infectología Dr. José Daniel Rodríguez Maridueña, Guayaquil, Ecuador
| | | | | | | | | | - José E Villacis
- Centro de Investigación Para La Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, 1701-2184, Ecuador
| | - José Gutiérrez-Fernández
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain
- Department of Microbiology, Hospital Virgen de Las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
10
|
Sabour S, Bantle K, Bhatnagar A, Huang JY, Biggs A, Bodnar J, Dale JL, Gleason R, Klein L, Lasure M, Lee R, Nazarian E, Schneider E, Smith L, Snippes Vagnone P, Therrien M, Tran M, Valley A, Wang C, Young EL, Lutgring JD, Brown AC. Descriptive analysis of targeted carbapenemase genes and antibiotic susceptibility profiles among carbapenem-resistant Acinetobacter baumannii tested in the Antimicrobial Resistance Laboratory Network-United States, 2017-2020. Microbiol Spectr 2024; 12:e0282823. [PMID: 38174931 PMCID: PMC10845962 DOI: 10.1128/spectrum.02828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacillus that can cause severe and difficult-to-treat healthcare-associated infections. A. baumannii can harbor mobile genetic elements carrying genes that produce carbapenemase enzymes, further limiting therapeutic options for infections. In the United States, the Antimicrobial Resistance Laboratory Network (AR Lab Network) conducts sentinel surveillance of carbapenem-resistant Acinetobacter baumannii (CRAB). Participating clinical laboratories sent CRAB isolates to the AR Lab Network for characterization, including antimicrobial susceptibility testing and molecular detection of class A (Klebsiella pneumoniae carbapenemase), class B (Active-on-Imipenem, New Delhi metallo-β-lactamase, and Verona integron-encoded metallo-β-lactamase), and class D (Oxacillinase, blaOXA-23-like, blaOXA-24/40-like, blaOXA-48-like, and blaOXA-58-like) carbapenemase genes. During 2017‒2020, 6,026 CRAB isolates from 45 states were tested for targeted carbapenemase genes; 1% (64 of 5,481) of CRAB tested for targeted class A and class B genes were positive, but 83% (3,351 of 4,041) of CRAB tested for targeted class D genes were positive. The number of CRAB isolates carrying a class A or B gene increased from 2 of 312 (<1%) tested in 2017 to 26 of 1,708 (2%) tested in 2020. Eighty-three percent (2,355 of 2,846) of CRAB with at least one of the targeted carbapenemase genes and 54% (271 of 500) of CRAB without were categorized as extensively drug resistant; 95% (42 of 44) of isolates carrying more than one targeted gene had difficult-to-treat susceptibility profiles. CRAB isolates carrying targeted carbapenemase genes present an emerging public health threat in the United States, and their rapid detection is crucial to improving patient safety.IMPORTANCEThe Centers for Disease Control and Prevention has classified CRAB as an urgent public health threat. In this paper, we used a collection of >6,000 contemporary clinical isolates to evaluate the phenotypic and genotypic properties of CRAB detected in the United States. We describe the frequency of specific carbapenemase genes detected, antimicrobial susceptibility profiles, and the distribution of CRAB isolates categorized as multidrug resistant, extensively drug-resistant, or difficult to treat. We further discuss the proportion of isolates showing susceptibility to Food and Drug Administration-approved agents. Of note, 84% of CRAB tested harbored at least one class A, B, or D carbapenemase genes targeted for detection and 83% of these carbapenemase gene-positive CRAB were categorized as extensively drug resistant. Fifty-four percent of CRAB isolates without any of these carbapenemase genes detected were still extensively drug-resistant, indicating that infections caused by CRAB are highly resistant and pose a significant risk to patient safety regardless of the presence of one of these carbapenemase genes.
Collapse
Affiliation(s)
- Sarah Sabour
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katie Bantle
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amelia Bhatnagar
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer Y. Huang
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Angela Biggs
- Maryland Department of Health, Baltimore, Maryland, USA
| | | | | | - Rachel Gleason
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Liore Klein
- Maryland Department of Health, Baltimore, Maryland, USA
| | - Megan Lasure
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Rachel Lee
- Texas Department of State Health Services, Austin, Texas, USA
| | | | - Emily Schneider
- Washington State Department of Health Public Health Laboratories, Shoreline, Washington, USA
| | - Lori Smith
- Utah Public Health Laboratory, Taylorsville, Utah, USA
| | | | | | - Michael Tran
- Washington State Department of Health Public Health Laboratories, Shoreline, Washington, USA
| | - Ann Valley
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Chun Wang
- Texas Department of State Health Services, Austin, Texas, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Taylorsville, Utah, USA
| | - Joseph D. Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Allison C. Brown
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Baker KS, Jauneikaite E, Hopkins KL, Lo SW, Sánchez-Busó L, Getino M, Howden BP, Holt KE, Musila LA, Hendriksen RS, Amoako DG, Aanensen DM, Okeke IN, Egyir B, Nunn JG, Midega JT, Feasey NA, Peacock SJ. Genomics for public health and international surveillance of antimicrobial resistance. THE LANCET. MICROBE 2023; 4:e1047-e1055. [PMID: 37977162 DOI: 10.1016/s2666-5247(23)00283-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Historically, epidemiological investigation and surveillance for bacterial antimicrobial resistance (AMR) has relied on low-resolution isolate-based phenotypic analyses undertaken at local and national reference laboratories. Genomic sequencing has the potential to provide a far more high-resolution picture of AMR evolution and transmission, and is already beginning to revolutionise how public health surveillance networks monitor and tackle bacterial AMR. However, the routine integration of genomics in surveillance pipelines still has considerable barriers to overcome. In 2022, a workshop series and online consultation brought together international experts in AMR and pathogen genomics to assess the status of genomic applications for AMR surveillance in a range of settings. Here we focus on discussions around the use of genomics for public health and international AMR surveillance, noting the potential advantages of, and barriers to, implementation, and proposing recommendations from the working group to help to drive the adoption of genomics in public health AMR surveillance. These recommendations include the need to build capacity for genome sequencing and analysis, harmonising and standardising surveillance systems, developing equitable data sharing and governance frameworks, and strengthening interactions and relationships among stakeholders at multiple levels.
Collapse
Affiliation(s)
- Kate S Baker
- Department for Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Katie L Hopkins
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London, UK; Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain; CIBERESP, ISCIII, Madrid, Spain
| | - Maria Getino
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Benjamin P Howden
- The Centre for Pathogen Genomics, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Lillian A Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate - Africa, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Daniel G Amoako
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa; School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Nuffield Department of Medicine, University of Oxford, Big Data Institute, Oxford, UK
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana, West Africa
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | - Nicholas A Feasey
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Malawi
| | | |
Collapse
|
12
|
Itani R, Khojah HMJ, Karout S, Rahme D, Hammoud L, Awad R, Abu-Farha R, Mukattash TL, Raychouni H, El-Lakany A. Acinetobacter baumannii: assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrob Resist Infect Control 2023; 12:136. [PMID: 38031181 PMCID: PMC10685635 DOI: 10.1186/s13756-023-01343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is a major nosocomial pathogen capable of causing life-threatening infections. This bacterium is highly resistant to antibiotics and associated with high mortality rates. Therefore, this study aimed to evaluate A. baumannii's susceptibility patterns to antimicrobials, assess the appropriateness of the initiated antimicrobial therapy, determine the mortality rate, and identify predictors associated with mortality. METHODS A retrospective observational study was conducted among patients infected with A. baumannii at a university hospital in Lebanon through the revision of medical records. Kaplan-Meier survival analysis and log-rank tests were used to analyze time-to-mortality. Binary logistic regression was performed to identify predictors of mortality. RESULTS The records of 188 patients were screened, and 111 patients with A. baumannii infection were enrolled. Almost all isolates were resistant to carbapenem, and 43% of the isolates were extensively-drug resistant. Almost half of the patients received initial inappropriate antimicrobial therapy (n = 50, 45.1%). The 30-day mortality rate associated with A. baumannii infection was 71.2% (79/111). The time to mortality in patients who received inappropriate antimicrobial therapy (5.70 ± 1.07 days) was significantly shorter than in those who received appropriate antimicrobial therapy (12.43 ± 1.01 days, P < 0.01). Binary logistic regression revealed that inappropriate antimicrobial therapy (adjusted odds ratio [AOR] = 16.22, 95% CI 2.68-9.97, P = 0.002), mechanical ventilation (AOR = 14.72, 95% CI 3.27-6.61, P < 0.001), and thrombocytopenia (AOR = 8.82, 95% CI 1.12-9.75, P = 0.003) were more likely associated with mortality. CONCLUSIONS A. baumannii exhibits an alarming mortality rate among infected patients. Thrombocytopenia, mechanical ventilation, and inappropriate antibiotic administration are associated with mortality in patients infected with A. baumannii. The prompt initiation of appropriate antimicrobial therapy, infection control measures, and effective stewardship program are crucial to reduce the incidence of A. baumannii and improve the treatment outcomes.
Collapse
Affiliation(s)
- Rania Itani
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, P.O. Box: 30051, 41477, Madinah, Kingdom of Saudi Arabia
| | - Samar Karout
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon.
| | - Deema Rahme
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon
| | - Lara Hammoud
- Pharmacy Department, Hammoud Hospital University Medical Center, Sidon, Lebanon
| | - Reem Awad
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
| | - Rana Abu-Farha
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, P.O. Box: 11931, Amman, Jordan
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box: 3030, Irbid, 22110, Jordan
| | - Hamza Raychouni
- Intensive Care Unit, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
- Intensive Care Unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdalla El-Lakany
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Riad El Solh, 1107 2809, P.O. Box: 11-5020, Beirut, Lebanon
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
da Silva MEP, Gomes MADS, Rodrigues RS, Lima NCDS, Carvalho AG, Taborda RLM, Matos NB. Multidrug-resistant Acinetobacter spp. from hospital intensive care units in Brazilian Amazon. Braz J Infect Dis 2023; 27:103687. [PMID: 37977198 PMCID: PMC10667742 DOI: 10.1016/j.bjid.2023.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Acinetobacter spp. are one of the main pathogens responsible for healthcare-associated infections and are associated with high rates of morbidity and mortality globally, mainly because of their high capacity to present and develop resistance to antimicrobials. To identify species of the Acinetobacter and their resistance profiles from samples collected from hospitalized patients, health professionals and hospital environmental sources in the intensive care units of different public reference hospitals in Porto Velho City, Rondônia, Western Brazilian Amazon. Isolates were identified using microbiological and molecular techniques. The antimicrobial susceptibility profile was determined by disk diffusion. A total of 201 Acinetobacter spp. isolates were identified, of which 47.3% originated from hospital structures, 46.8% from patients and 6% from healthcare professionals. A. baumannii and A. nosocomialis were the most prevalent, with frequency of 58.7% and 31.8%, respectively. Regarding the susceptibility profile, it was observed that 56.3% were classified as multidrug-resistant and 76.2% of the samples belonging to A. baumannii were resistant to carbapenems. In contrast, 96.9% were susceptible to polymyxin B and 91.3% to doxycycline. The data presented here can be used to guide and strengthen the control of multidrug-resistant infections caused by Acinetobacter spp., in addition to improving providing information from a traditionally unassisted region of Brazil.
Collapse
Affiliation(s)
- Marcos Eduardo Passos da Silva
- Fundação Oswaldo Cruz (FIOCRUZ/RO), Laboratório de Microbiologia, Porto Velho, RO, Brazil; Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, Porto Velho, RO, Brazil
| | | | - Renata Santos Rodrigues
- Instituto Oswaldo Cruz (IOC), Programa de Pós-graduação em Biologia Celular e Molecular (PGBCM), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nucia Cristiane da Silva Lima
- Fundação Oswaldo Cruz (FIOCRUZ/RO), Laboratório de Microbiologia, Porto Velho, RO, Brazil; Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, RO, Brazil
| | - Anjo Gabriel Carvalho
- Fundação Oswaldo Cruz (FIOCRUZ/RO), Laboratório de Microbiologia, Porto Velho, RO, Brazil; Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, Porto Velho, RO, Brazil
| | | | - Najla Benevides Matos
- Fundação Oswaldo Cruz (FIOCRUZ/RO), Laboratório de Microbiologia, Porto Velho, RO, Brazil; Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, Porto Velho, RO, Brazil; Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia na Amazônia Ocidental (INCT-EPIAMO), Porto Velho, RO, Brazil.
| |
Collapse
|
14
|
Fatmawati NND, Suwardana GNR, Dharmika IAGW, Tarini NMA, Sujaya IN, Suranadi IW. Early detection of a possible multidrug-resistant Acinetobacter baumannii outbreak in the local hospital setting by using random amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR), oxacillinase gene profiles, and antibiograms. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:642-653. [PMID: 37941878 PMCID: PMC10628083 DOI: 10.18502/ijm.v15i5.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background and Objectives Detecting the source of a potential outbreak of multidrug resistant (MDR) Acinetobacter baumannii is necessary to be investigated. This study aimed to detect the possibility of A. baumannii outbreak in a hospital setting using a combination of random amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR), antibiograms, and the presence of oxacillinase genes. Materials and Methods The antibiogram of 31 clinical isolates and six environmental isolates of A. baumannii were determined by Vitek® 2 Compact. Oxacillinase genes (OXA-23, -24, -51, and -58) were detected by PCR, and RAPD-PCR was conducted using DAF-4 and ERIC-2 primers. The Similarity Index and dendrogram were generated using GelJ v2.3 software. Results The antibiograms showed that all MDR A. baumannii isolates has very limited susceptibility to cephalosporins, but mostly susceptible to tigecycline. All isolates were positive for bla OXA-51-like gene, thirty-two of 37 total isolates (86.5%) were positive for bla OXA-23-like gene, and none were positive for bla OXA-24-like and bla OXA-58-like genes. RAPD-PCR showed that the DAF-4 primer on average had more band visualization and lower Similarity Index's variation compared to the ERIC-2. The discriminatory power of DAF-4 was 0.906. There was a significant correlation between the DAF-4 dendrogram pattern with the antibiogram (r=0.494, p<0.001) and the presence of bla OXA-23-like gene (r=0.634, p<0.001) from all ICU A isolates. Six out of fourteen ICU A isolates belonged to the same cluster with >95% Similarity Index, while one clinical isolate having an identical dendrogram and antibiogram pattern with an environmental isolate within this cluster. Conclusion There is a high probability of MDR A. baumannii outbreak within ICU A detected by multiple analysis of RAPD-PCR, antibiogram and the bla OXA-23-like gene profiles. This combinatorial approach is conceivable to mitigate possible outbreak situations of A. baumannii in the local hospital without sophisticated microbiology laboratory.
Collapse
Affiliation(s)
- Ni Nengah Dwi Fatmawati
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | | | | | - Ni Made Adi Tarini
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - I Nengah Sujaya
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - I Wayan Suranadi
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Udayana University, Bali, Indonesia
| |
Collapse
|
15
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|
16
|
Kang HM, Yun KW, Choi EH. Molecular epidemiology of Acinetobacter baumannii complex causing invasive infections in Korean children during 2001-2020. Ann Clin Microbiol Antimicrob 2023; 22:32. [PMID: 37138308 PMCID: PMC10158003 DOI: 10.1186/s12941-023-00581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii (AB) has emerged as one of the most problematic pathogens affecting critically ill patients. This study aimed to investigate the longitudinal epidemiology of AB causing invasive diseases in children. METHODS Acinetobacter spp. cultured from sterile body fluids and identified as Acinetobacter calcoaceticus-baumannii (ACB) complexes by automated systems from children aged below 19 years old were prospectively collected during 2001-2020. The discriminative partial sequence of rpoB gene was sequenced to identify the species, and sequence types (STs) were determined. Temporal changes in antimicrobial susceptibilities and STs were analyzed. RESULTS In total, 108 non-duplicate ACB isolates were obtained from patients with invasive infections. The median age was 1.4 (interquartile range, 0.1-7.9) years, and 60.2% (n = 65) were male. Acinetobacter baumannii comprised 55.6% (n = 60) of the isolates, and the 30-day mortality was higher in patients with isolated AB than in those with non-baumannii Acinetobacter spp. (46.7% vs. 8.3%, P < 0.001). After 2010, complete genotype replacement was observed from non-CC92 genotypes to only CC92 genotypes. Carbapenem resistance rates were highest in AB CC92 (94.2%), followed by AB non-CC92 (12.5%) and non-baumannii Acinetobacter spp. (2.1%). During 2014-2017, which included clustered cases of invasive ST395, colistin resistance increased to 62.5% (n = 10/16), showing a mortality rate of 88% during this period. CONCLUSION Complete genotype replacement of non-CC92 with CC92 genotypes was observed. AB CC92 was extensively drug-resistant, and pandrug resistance was observed depending on the ST, warranting careful monitoring.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ki Wook Yun
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, South Korea.
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Seoul National University Children's Hospital, Seoul, South Korea.
| | - Eun Hwa Choi
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
17
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
18
|
Li T, Luo D, Ning N, Liu X, Chen F, Zhang L, Bao C, Li Z, Li D, Gu H, Qu F, Yang X, Huang Y, Li B, Wang H. Acinetobacter baumannii adaptation to the host pH microenvironment is mediated by allelic variation in a single residue of BauA protein. PNAS NEXUS 2023; 2:pgad079. [PMID: 37065616 PMCID: PMC10098034 DOI: 10.1093/pnasnexus/pgad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023]
Abstract
Acinetobacter baumannii has been listed as one of the most critical pathogens in nosocomial infections; however, the key genes and mechanisms to adapt to the host microenvironment lack in-depth understanding. In this study, a total of 76 isolates (from 8 to 12 isolates per patient, spanning 128 to 188 days) were longitudinally collected from eight patients to investigate the within-host evolution of A. baumannii. A total of 70 within-host mutations were identified, 80% of which were nonsynonymous, indicating the important role of positive selection. Several evolutionary strategies of A. baumannii to increase its potential to adapt to the host microenvironment were identified, including hypermutation and recombination. Six genes were mutated in isolates from two or more patients, including two TonB-dependent receptor genes (bauA and BJAB07104_RS00665). In particular, the siderophore receptor gene bauA was mutated in multiple isolates from four patients with three MLST types, and all mutations were at amino acid 391 in ligand-binding sites. With 391T or 391A, BauA was more strongly bound to siderophores, which promoted the iron-absorption activity of A. baumannii at acidic or neutral pH, respectively. Through the A/T mutation at site 391 of BauA, A. baumannii displayed two reversible phases to adapt to distinct pH microenvironments. In conclusion, we demonstrated the comprehensive within-host evolutionary dynamics of A. baumannii, and discovered a key mutation of BauA site 391 as a genetic switch to adapt to different pH values, which may represent a model in the pathogen evolutionary adaption of the host microenvironment.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Deyan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Fanghong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Liangyan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chunmei Bao
- Department of Clinical Laboratory, The Fifth Medical Center of PLA General Hospital, No. 100 West Fourth Ring Road, Beijing 100039, China
| | - Zhan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Deyu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Fen Qu
- Department of Clinical Laboratory, The Fifth Medical Center of PLA General Hospital, No. 100 West Fourth Ring Road, Beijing 100039, China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yanyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Boan Li
- Department of Clinical Laboratory, The Fifth Medical Center of PLA General Hospital, No. 100 West Fourth Ring Road, Beijing 100039, China
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
19
|
Gill CM, Santini D, Takemura M, Longshaw C, Yamano Y, Echols R, Nicolau DP. In vivo efficacy & resistance prevention of cefiderocol in combination with ceftazidime/avibactam, ampicillin/sulbactam or meropenem using human-simulated regimens versus Acinetobacter baumannii. J Antimicrob Chemother 2023; 78:983-990. [PMID: 36775993 PMCID: PMC10068413 DOI: 10.1093/jac/dkad032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Evaluate the in vivo efficacy and resistance prevention of cefiderocol in combination with ceftazidime/avibactam, ampicillin/sulbactam and meropenem using human-simulated regimens (HSR) in the murine infection model. METHODS In total, 15 clinical A. baumannii were assessed: cefiderocol MICs, 2 mg/L (previously developed resistance on therapy), n = 3; 8 mg/L, n = 2; ≥32 mg/L, n = 10 (including VEB and PER-harbouring isolates). Mice received inactive control, cefiderocol, cefiderocol + ceftazidime/avibactam (C-CZA), cefiderocol + ampicillin/sulbactam (C-SAM) or cefiderocol + meropenem (C-MEM) HSRs. The mean change in log10 cfu/thigh compared with starting inoculum was assessed. Resistance development on treatment was a >4-fold increase in MIC relative control animals. In vitro activities of combinations were assessed by disc stacking. RESULTS Against cefiderocol-non-susceptible isolates, combinations produced significant kill with C-CZA -3.75 ± 0.37 reduction in log10 cfu/thigh, C-SAM produced -3.55 ± 0.50 and C-MEM produced -2.18 ± 1.75 relative to baseline. Elevated MICs in cefiderocol treated animals occurred in three out of three isolates with MICs of 2 mg/L. Of these isolates, one developed elevated MICs with C-MEM compared with none treated with C-CZA or C-SAM. Disc stacking with C-CZA or C-SAM returned all isolates to at least the CLSI intermediate breakpoint, which may correlate with in vivo efficacy. CONCLUSIONS Against cefiderocol-non-susceptible isolates, cefiderocol + ceftazidime/avibactam or ampicillin/sulbactam HSR produced in vivo kill against all 12 cefiderocol-non-susceptible isolates. Cefiderocol with ceftazidime/avibactam or ampicillin/sulbactam prevented the development of resistance during treatment against cefiderocol-high-end-susceptible isolates with a propensity for resistance on therapy. These data support the clinical evaluation of cefiderocol with ceftazidime/avibactam or ampicillin/sulbactam against A. baumannii, including multi-drug-resistant isolates.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Debora Santini
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Miki Takemura
- Research Planning Department, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka,Osaka 561-0825, Japan
| | | | - Yoshinori Yamano
- Research Planning Department, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka,Osaka 561-0825, Japan
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLC, 753 Westport Road, Easton, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.,Division of Infectious Diseases, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| |
Collapse
|
20
|
Liu H, Hu D, Wang D, Wu H, Pan Y, Chen X, Qi L, Li L, Liang R. In vitro analysis of synergistic combination of polymyxin B with 12 other antibiotics against MDR Acinetobacter baumannii isolated from a Chinese tertiary hospital. J Antibiot (Tokyo) 2023; 76:20-26. [PMID: 36307731 DOI: 10.1038/s41429-022-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
In clinical practice, polymyxins are suggested to be used in combination with other antibiotics for improving their antibacterial efficacy and preventing the emergency of antibiotic-resistant strains. However, even though synergistic combination of polymyxin B with many antibiotics have been confirmed in various studies with different bacterial species and analyzing methods, which antibiotic is the best option for combination therapy of polymyxin B against MDR A. baumannii remains uncertain. In this study, we systematically analyzed the synergistic combination of polymyxin B with 12 other antibiotics against MDR A. baumannii isolated from a Chinese tertiary hospital using the checkerboard assay. The results suggest that, for polymyxin B-based combination therapy against MDR A. baumannii as characterized in this hospital, cefperazone-sulbactam may be the best partner, since it has the highest synergistic rate and the best synergistic effect with polymyxin B. Minocycline, imipenem, meropenem, ceftazidime, cefepime, amikacin and sulfamethoxazole also have some synergistic effects with polymyxin B, but piperacillin-tazobactam, ciprofloxacin, levofloxacin and tobramycin show no synergism. None of these 12 antibiotics has an antagonistic effect when combined with polymyxin B.
Collapse
Affiliation(s)
- Hui Liu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dan Hu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dongxin Wang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Han Wu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Xin Chen
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lin Qi
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lian Li
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Rongxin Liang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.
| |
Collapse
|