1
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
2
|
Cao Z, Guan L, Yu R, Yang F, Chen J. High Expression of Heterogeneous Nuclear Ribonucleoprotein A1 Facilitates Hepatocellular Carcinoma Growth. J Hepatocell Carcinoma 2023; 10:517-530. [PMID: 37034304 PMCID: PMC10075271 DOI: 10.2147/jhc.s402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) represents one of the most common tumors in the world. Our study aims to explore new markers and therapeutic targets for HCC. Heterogeneous Nuclear ribonucleoprotein A1 (hnRNPA1) has recently been found to be involved in the progression of several types of cancer, but its role in HCC remains uncovered. Methods We performed bioinformatic analysis to preliminarily show the relationship between hnRNPA1 and liver cancer. Then the correlation of the hnRNPA1 gene expression with clinicopathological characteristics of HCC patients was verified by human liver cancer tissue microarrays. The functional role of this gene was evaluated by in vivo and vitro experiments. Results Results showed that the expression of hnRNPA1 was upregulated in HCC tissues and was associated with pathological stage of HCC patients. Knockdown of hnRNPA1 gene markedly inhibited tumor growth in vivo, and reversed the effects on proliferation, migration and invasion and promoted apoptosis in vitro. Furthermore, down-regulation of hnRNPA1 gene expression can inhibit the activity of the MEK/ERK pathway. Conclusion In our work, we combined bioinformatic analysis with in vivo and in vitro experiments to initially elucidate the function of hnRNPA1 in liver cancer, which may help to explore biomarkers and therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Li Guan
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Correspondence: Jie Chen; Fan Yang, Email ;
| |
Collapse
|
3
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3′-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3′-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
|
5
|
Chen X, Gong R, Wang J, Ma B, Lei K, Ren H, Wang J, Zhao C, Wang L, Yu Q. Identification of HnRNP Family as Prognostic Biomarkers in Five Major Types of Gastrointestinal Cancer. Curr Gene Ther 2022; 22:449-461. [PMID: 35794744 PMCID: PMC9906633 DOI: 10.2174/1566523222666220613113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoproteins (hnRNPs), a large family of RNAbinding proteins, have been implicated in tumor progression in multiple cancer types. However, the expression pattern and prognostic value of hnRNPs in five gastrointestinal (GI) cancers, including gastric, colorectal, esophageal, liver, and pancreatic cancer, remain to be investigated. OBJECTIVE The current research aimed to identify prognostic biomarkers of the hnRNP family in five major types of gastrointestinal cancer. METHODS Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), and Kaplan-Meier Plotter were used to explore the hnRNPs expression levels concerning clinicopathological parameters and prognostic values. The protein level of hnRNPU was validated by immunohistochemistry (IHC) in human tissue specimens. Genetic alterations of hnRNPs were analyzed using cBioportal, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to illustrate the biological functions of co-expressed genes of hnRNPs. RESULTS The vast majority of hnRNPs were highly expressed in five types of GI cancer tissues compared to their adjacent normal tissues, and mRNA levels of hnRNPA2B1, D, Q, R, and U were significantly different in various GI cancer types at different stages. In addition, Kaplan-Meier analysis revealed that the increased hnRNPs expression levels were correlated with better prognosis in gastric and rectal cancer patients (log-rank p < 0.05). In contrast, patients with high levels of hnRNPs exhibited a worse prognosis in esophageal and liver cancer (log-rank p < 0.05). Using immunohistochemistry, we further confirmed that hnRNPU was overexpressed in gastric, rectal, and liver cancers. In addition, hnRNPs genes were altered in patients with GI cancers, and RNA-related processing was correlated with hnRNPs alterations. CONCLUSION We identified differentially expressed genes of hnRNPs in tumor tissues versus adjacent normal tissues, which might contribute to predicting tumor types, early diagnosis, and targeted therapies in five major types of GI cancer.
Collapse
Affiliation(s)
- Xianghan Chen
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, China;,Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China;,These authors contribute to this work equally.
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China;,Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;,These authors contribute to this work equally.
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Boyi Ma
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China;,Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China;,Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China,Address correspondence to these authors at the Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China; Tel/Fax: 86-532-82917308; E-mail: and Department of Pathology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266003, China; Tel/Fax: 86-532- 82919350; E-mail:
| | - Qian Yu
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China;,Address correspondence to these authors at the Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China; Tel/Fax: 86-532-82917308; E-mail: and Department of Pathology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266003, China; Tel/Fax: 86-532- 82919350; E-mail:
| |
Collapse
|
6
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
7
|
Wu J, Wang S, Li X, Zhang Q, Yang J, Ma Y, Guan Z, Yang Z. Selective Anti-melanoma Effect of Phosphothioated Aptamer Encapsulated by Neutral Cytidinyl/Cationic Lipids. Front Cell Dev Biol 2021; 9:660233. [PMID: 34262898 PMCID: PMC8273494 DOI: 10.3389/fcell.2021.660233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
BC15-31 is a DNA aptamer that targets heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which plays a crucial role in the process of pre-RNA maturation and is also essential for the rapid proliferation of tumor cells. In this research, we modified BC15-31 with a phosphorothioate (PS) backbone, LNA, and 2-O-MOE to enhance its stability and target affinity. In addition, a neutral cytidinyl lipid (DNCA) and a cationic lipid (CLD) were mixed to encapsulate modified aptamers with the aim of improving their cell permeability with low toxicity. Under the DNCA/CLD package, aptamers are mainly distributed in the nucleus. A modified sequence WW-24 showed an excellent selective anti-melanoma (A375 cells, ∼25 nM, 80%) activity, targeted to both hnRNP A1 and hnRNP A2/B1 found by the BLI experiment, and induced more early and late apoptosis in vitro, which also showed stronger antitumor effect and longer accumulation time in vivo. These results provide a new strategy for further clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jie Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
p300-Catalyzed Lysine Crotonylation Promotes the Proliferation, Invasion, and Migration of HeLa Cells via Heterogeneous Nuclear Ribonucleoprotein A1. ACTA ACUST UNITED AC 2020; 2020:5632342. [PMID: 33457194 PMCID: PMC7787849 DOI: 10.1155/2020/5632342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Cervical carcinoma is the third most common cause of cancer in women with a significant challenge in clinical treatment. Human papillomavirus (HPV) is strongly responsible for cervical carcinoma. Here, we show the increased expression level of heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) in HPV-associated cervical cancer cells including HeLa, Caski, and SiHa cells, especially in HeLa cells. We provide the evidence that the expression of HNRNPA1 is closely related to HeLa cell proliferation, invasion, and migration. Emerging evidence show that histone modifications account for gene expression. Moreover, our results indicate that HNRNPA1 could be regulated by p300 through p300-mediated lysine crotonylation. Inhibition of p300 downregulated both the lysine crotonylation level and the HNRNPA1 expression. And p300-mediated lysine crotonylation participates in the regulation of HNRNPA1 on HeLa cell proliferation, invasion, and migration. Collectively, our study uncovers that p300-mediated lysine crotonylation enhances expression of HNRNPA1 to promote the proliferation, invasion, and migration of HeLa cells.
Collapse
|
9
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
10
|
Yu XX, Ge KL, Liu N, Zhang JY, Xue ML, Ge YL. Selection and Characterization of a Novel DNA Aptamer, Apt-07S Specific to Hepatocellular Carcinoma Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1535-1545. [PMID: 32368012 PMCID: PMC7182459 DOI: 10.2147/dddt.s244149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/24/2020] [Indexed: 02/02/2023]
Abstract
Background The efficacy of traditional therapeutic methods for liver cancer is unsatisfying because of the poor targeting, and inefficient drug delivery system. A recent study has proven that aptamers, developed through cell-SELEX, could specifically recognize cancer cells and show great potential in the development of a delivery system for anticancer drugs. Purpose To develop a hepatocellular carcinoma specific aptamer using two kinds of hepatocellular carcinoma cell lines, HepG2 and SMMC-7721, as double targets and a normal hepatocyte, L02, as a negative control cell. Methods Hepatocellular carcinoma specific aptamer was developed via cell-SELEX. The enrichment of the library was monitored by flow cytometric analysis. The specificity, affinity, and distribution of the candidate aptamer were explored. Further study was carried to assess its potential in drug delivery. Results The library was enriched after 14 rounds of screening. Candidate aptamer Apt-07S can recognize four kinds of hepatocellular carcinoma cells and show little cell-binding ability to normal cells and four cell lines of different cancer types, revealing a high specificity of Apt-07S. Confocal imaging showed that Apt-07S distributed both on the surface and in the cytoplasm of the two target cells. Moreover, an anti-sense nucleotide to gene Plk1 (ASO-Plk1) was connected at the 3' end of Apt-07S to form an integrated molecule (Apt-07S-ASO-Plk1); the functional analysis indicated that the structure of Apt-07S may help ASO-Plk1 enter the cancer cells. Conclusion The study indicates that Apt-07S can specifically target HCC and may have potential in the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Xiao-Xia Yu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province 266071, People's Republic of China
| | - Ke-Li Ge
- Integrative Medicine Research Center, Medical College, Qingdao University, Qingdao 266021, Shandong Province, People's Republic of China
| | - Ning Liu
- Department of Dermatology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, People's Republic of China
| | - Jin-Yu Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province 266071, People's Republic of China
| | - Mei-Lan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province 266071, People's Republic of China
| | - Yin-Lin Ge
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province 266071, People's Republic of China
| |
Collapse
|
11
|
Janikowska G, Kurzeja E, Janikowski M, Strzałka-Mrozik B, Pyka-Pająk A, Janikowski T. The Effect of Cyclosporine A on Dermal Fibroblast Cell - Transcriptomic Analysis of Inflammatory Response Pathway. Curr Pharm Biotechnol 2020; 21:1213-1223. [PMID: 32297577 DOI: 10.2174/1389201021666200416103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND The first immunosuppressive drug - cyclosporine A (CsA) has many unquestioned merits in maintaining organ transplants in patients, as well as, in the treatment of many inflammatory diseases, also associated with cutaneous manifestations. The main task of this drug is to suppress the inflammatory response at the sites of action, which is not well known. OBJECTIVE The objective of this study was to evaluate the influence of CsA in therapeutic concentration on the expression of genes associated with the inflammatory response pathway in normal human dermal fibroblasts (NHDF; CC-2511), and this study attempted to determine the mechanism of its action. METHODS The cytotoxicity MTT test was performed. The expression of the inflammatory response pathway genes was determined using HG-U133A_2.0 oligonucleotide microarrays. Statistical analysis was performed by GeneSpring 13.0 software using the PL-Grid platform. RESULTS Among the 5,300 mRNA, only 573 were changed significantly in response to CsA compared to the control fibroblasts (P≤0.05). CsA inhibited the expression of most genes associated with the inflammatory response in NHDFs. There were only 19 genes with a fold change (FC) lower than -2.0, among which EGR1, FOS, PBK, CDK1 and TOP2A had the lowest expression, as did CXCL2 which can directly impact inflammation. Furthermore, ZNF451 was strongly induced, and COL1A1, COL3A1, IL33, TNFRSFs were weakly up-regulated (FC lower than 2.0). CONCLUSION The CsA in therapeutic concentration influences the genes linked to the inflammatory response (in the transcriptional level) in human dermal fibroblasts. The findings suggest that the potential mechanism of CsA action in this concentration and on these genes can be associated with a profibrotic and proapoptotic, and genotoxic effects.
Collapse
Affiliation(s)
- Grażyna Janikowska
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewa Kurzeja
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marcin Janikowski
- Student Scientific Club at the Department of Molecular Biology, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Alina Pyka-Pająk
- Department of Analytical Chemistry, Medical University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
12
|
Li L, Yang X, Li K, Zhang G, Ma Y, Cai B, Li S, Ding H, Deng J, Nan X, Sun J, Wu Y, Shao N, Zhang L, Yang Z. d-/l-Isothymidine incorporation in the core sequence of aptamer BC15 enhanced its binding affinity to the hnRNP A1 protein. Org Biomol Chem 2019; 16:7488-7497. [PMID: 30272759 DOI: 10.1039/c8ob01454j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was reported to participate in the development of a variety of tumors. BC15 is a DNA aptamer targeting hnRNP A1. Firstly, through sequence truncation, we identified 31-mer sequence BC15-31 as the core sequence of BC15 with a strong binding affinity and high selectivity to the hnRNP A1 protein. Isothymidine (isoT) modification was then applied for the structural optimization of BC15-31, systematic modification and biological evaluation were carried out. Incorporation of isoT in the 1,3 sites at the 5'-end of BC15-31 can significantly enhance the protein affinity. Chemical modifications close to the 3'-end can greatly improve the stability of the aptamer. Furthermore, BC15-31 modified with isoT at both the 5'-end and 3'-end displayed an additive effect with enhanced bioactivity and stability at the same time. Our study strategy on BC15 provides a useful guideline for chemical modification and optimization of the aptamer for further clinical application.
Collapse
Affiliation(s)
- Liyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018; 10:cancers10030080. [PMID: 29562664 PMCID: PMC5876655 DOI: 10.3390/cancers10030080] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer-related technologies represent a revolutionary advancement in the capacity to rapidly develop new classes of targeting ligands. Structurally distinct RNA and DNA oligonucleotides, aptamers mimic small, protein-binding molecules and exhibit high binding affinity and selectivity. Although their molecular weight is relatively small—approximately one-tenth that of monoclonal antibodies—their complex tertiary folded structures create sufficient recognition surface area for tight interaction with target molecules. Additionally, unlike antibodies, aptamers can be readily chemically synthesized and modified. In addition, aptamers’ long storage period and low immunogenicity are favorable properties for clinical utility. Due to their flexibility of chemical modification, aptamers are conjugated to other chemical entities including chemotherapeutic agents, siRNA, nanoparticles, and solid phase surfaces for therapeutic and diagnostic applications. However, as relatively small sized oligonucleotides, aptamers present several challenges for successful clinical translation. Their short plasma half-lives due to nuclease degradation and rapid renal excretion necessitate further structural modification of aptamers for clinical application. Since the US Food and Drug Administration (FDA) approval of the first aptamer drug, Macugen® (pegaptanib), which treats wet-age-related macular degeneration, several aptamer therapeutics for oncology have followed and shown promise in pre-clinical models as well as clinical trials. This review discusses the advantages and challenges of aptamers and introduces therapeutic aptamers under investigation and in clinical trials for cancer treatments.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - David E Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA.
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
14
|
Abstract
Aptamers are single strand DNA or RNA molecules, selected by an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to various advantages of aptamers such as high temperature stability, animal free, cost effective production and its high affinity and selectivity for its target make them attractive alternatives to monoclonal antibody for use in diagnostic and therapeutic purposes. Aptamer has been generated against vesicular endothelial growth factor 165 involved in age related macular degeneracy. Macugen was the first FDA approved aptamer based drug that was commercialized. Later other aptamers were also developed against blood clotting proteins, cancer proteins, antibody E, agents involved in diabetes nephropathy, autoantibodies involved in autoimmune disorders, etc. Aptamers have also been developed against viruses and could work with other antiviral agents in treating infections.
Collapse
Affiliation(s)
- Abhishek Parashar
- Research Scholar, Animal Biochemistry Division, National Dairy Research Institute , Karnal, India
| |
Collapse
|
15
|
Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7:13446-63. [PMID: 26863567 PMCID: PMC4924653 DOI: 10.18632/oncotarget.7178] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Aptamers, also known as chemical antibodies, are single-stranded nucleic acid oligonucleotides which bind to their targets with high specificity and affinity. They are typically selected by repetitive in vitro process termed systematic evolution of ligands by exponential enrichment (SELEX). Owing to their excellent properties compared to conventional antibodies, notably their smaller physical size and lower immunogenicity and toxicity, aptamers have recently emerged as a new class of agents to deliver therapeutic drugs to cancer cells by targeting specific cancer-associated hallmarks. Aptamers can also be structurally modified to make them more flexible in order to conjugate other agents such as nano-materials and therapeutic RNA agents, thus extending their applications for cancer therapy. This review presents the current knowledge on the practical applications of aptamers in the treatment of a variety of cancers.
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - George Wilson
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Lionel Hebbard
- Discipline of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
16
|
Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation. Gene 2016; 585:58-64. [PMID: 26995654 DOI: 10.1016/j.gene.2016.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 01/15/2023]
Abstract
Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer.
Collapse
|
17
|
Yu C, Guo J, Liu Y, Jia J, Jia R, Fan M. Oral squamous cancer cell exploits hnRNP A1 to regulate cell cycle and proliferation. J Cell Physiol 2015; 230:2252-61. [PMID: 25752295 DOI: 10.1002/jcp.24956] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common human malignant tumor with high mortality. So far, the molecular pathogenesis of OSCC remains largely unclear. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an important multi-function splicing factor and closely related to tumorigenesis. hnRNP A1 is overexpressed in various tumors, and promotes aerobic glycolysis and elongation of telomere, but the function of hnRNP A1 in cell cycle and proliferation remains unclear. We found that hnRNP A1 was overexpressed in OSCC tissues, and was required for the growth of OSCC cells. Moreover, hnRNP A1 was highly expressed in the G2/M cell cycle phase. Knockdown of hnRNP A1 induced G2/M arrest. DNA microarray assay result showed that hnRNP A1 regulated the expression of a number of target genes associated with G2/M phase. Moreover, hnRNP A1 controlled the alternative splicing of CDK2 exon 5. These findings suggested that hnRNP A1 plays key roles in the regulation of cell cycle progression and pathogenesis of OSCC.
Collapse
Affiliation(s)
- Cheng Yu
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jihua Guo
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yu Liu
- College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Jun Jia
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Rong Jia
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Mingwen Fan
- Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
18
|
Kolovskaya OS, Zamay TN, Zamay AS, Glazyrin YE, Spivak EA, Zubkova OA, Kadkina AV, Erkaev EN, Zamay GS, Savitskaya AG, Trufanova LV, Petrova LL, Berezovski MV. DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013; 14:18999-9024. [PMID: 24065100 PMCID: PMC3794818 DOI: 10.3390/ijms140918999] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells express a large variety of RNA binding proteins (RBPs), with diverse affinities and specificities towards target RNAs. These proteins play a crucial role in almost every aspect of RNA biogenesis, expression and function. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a complex and diverse family of RNA binding proteins. hnRNPs display multiple functions in the processing of heterogeneous nuclear RNAs into mature messenger RNAs. hnRNP A1 is one of the most abundant and ubiquitously expressed members of this protein family. hnRNP A1 plays multiple roles in gene expression by regulating major steps in the processing of nascent RNA transcripts. The transcription, splicing, stability, export through nuclear pores and translation of cellular and viral transcripts are all mechanisms modulated by this protein. The diverse functions played by hnRNP A1 are not limited to mRNA biogenesis, but extend to the processing of microRNAs, telomere maintenance and the regulation of transcription factor activity. Genomic approaches have recently uncovered the extent of hnRNP A1 roles in the development and differentiation of living organisms. The aim of this review is to highlight recent developments in the study of this protein and to describe its functions in cellular and viral gene expression and its role in human pathologies.
Collapse
Affiliation(s)
- Jacques Jean-Philippe
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|