1
|
Kamiya Y, Takeyama Y, Mizuno T, Satoh F, Asanuma H. Investigation of Strand-Selective Interaction of SNA-Modified siRNA with AGO2-MID. Int J Mol Sci 2020; 21:ijms21155218. [PMID: 32717920 PMCID: PMC7432901 DOI: 10.3390/ijms21155218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Small interfering RNA (siRNA) has been recognized as a powerful gene-silencing tool. For therapeutic application, chemical modification is often required to improve the properties of siRNA, including its nuclease resistance, activity, off-target effects, and tissue distribution. Careful siRNA guide strand selection in the RNA-induced silencing complex (RISC) is important to increase the RNA interference (RNAi) activity as well as to reduce off-target effects. The passenger strand-mediated off-target activity was previously reduced and on-target activity was enhanced by substitution with acyclic artificial nucleic acid, namely serinol nucleic acid (SNA). In the present study, the reduction of off-target activity caused by the passenger strand was investigated by modifying siRNAs with SNA. The interactions of SNA-substituted mononucleotides, dinucleotides, and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-labeled double-stranded RNA (dsRNA) with the MID domain of the Argonaute 2 (AGO2) protein, which plays a pivotal role in strand selection by accommodation of the 5’-terminus of siRNA, were comprehensively analyzed. The obtained nuclear magnetic resonance (NMR) data revealed that AGO2-MID selectively bound to the guide strand of siRNA due to the inhibitory effect of the SNA backbone located at the 5’ end of the passenger strand.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Correspondence: (Y.K.); (H.A.); Tel.: +81-52-789-2552 (Y.K.); +81-52-789-2488 (H.A.)
| | | | | | | | - Hiroyuki Asanuma
- Correspondence: (Y.K.); (H.A.); Tel.: +81-52-789-2552 (Y.K.); +81-52-789-2488 (H.A.)
| |
Collapse
|
2
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
3
|
Abstract
Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of the DNA double helix and initially targeted nucleosides and nucleotides. The origins of three analogues that remain staples of modification strategies and figure prominently in FDA-approved nucleic acid therapeutics can be traced to the 1960s: 2'-deoxy-2'-fluoro-RNA (2'-F RNA), 2'- O-methyl-RNA (2'- OMe RNA), and the phosphorothioates (PS-DNA/RNA). Progress in nucleoside phosphoramidite-based solid phase oligonucleotide synthesis has gone hand in hand with the creation of second-generation (e.g., 2'- O-(2-methoxyethyl)-RNA, MOE-RNA) and third-generation (e.g., bicyclic nucleic acids, BNAs) analogues, giving rise to an expanding universe of modified nucleic acids. Thus, beyond site-specifically altered DNAs and RNAs with a modified base, sugar, and/or phosphate backbone moieties, nucleic acid chemists have created a host of conjugated oligonucleotides and artificial genetic polymers (XNAs). The search for oligonucleotides with therapeutic efficacy constitutes a significant driving force for these investigations. However, nanotechnology, diagnostics, synthetic biology and genetics, nucleic acid etiology, and basic research directed at the properties of native and artificial pairing systems have all stimulated the design of ever more diverse modifications. Modification of nucleic acids can affect pairing and chemical stability, conformation and interactions with a flurry of proteins and enzymes that play important roles in uptake, transport or processing of targets. Enhancement of metabolic stability is a central concern in the design of antisense, siRNA and aptamer oligonucleotides for therapeutic applications. In the antisense approach, uniformly modified oligonucleotides or so-called gapmers are used to target a specific RNA. The former may sterically block transcription or direct alternative splicing, whereas the latter feature a central PS window that elicits RNase H-mediated cleavage of the target. The key enzyme in RNA interference (RNAi) is Argonaute 2 (Ago2), a dynamic multidomain enzyme that binds multiple regions of the guide (antisense) and passenger (sense) siRNAs. The complexity of the individual interactions between Ago2 and the siRNA duplex provides significant challenges for chemical modification. Therefore, a uniform (the same modification throughout, e.g., antisense) or nearly uniform (e.g., aptamer) modification strategy is less useful in the pursuit of siRNA therapeutic leads. Instead, unique structural features and protein interactions of 5'-end (guide/Ago2MID domain), seed region, central region (cleavage site/Ago2 PIWI domain), and 3'-terminal nucleotides (guide/Ago2 PAZ domain) demand a more nuanced approach in the design of chemically modified siRNAs for therapeutic use. This Account summarizes current siRNA modification strategies with an emphasis on the regio-specific interactions between oligonucleotide and Ago2 and how these affect the choice of modification and optimization of siRNA efficacy. In addition to standard assays applied to measure the effects of modification on the stability of pairing and resistance against nuclease degradation, structural insights based on crystallographic data for modified RNAs alone and in complex with Ago2 from molecular modeling studies are a valuable guide in the design of siRNA therapeutics. Thus, this comprehensive approach is expected to result in accelerated generation of new siRNA-based therapies against various diseases, now that the first siRNA has obtained approval by the US FDA for treatment of hereditary hATTR amyloidosis.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Frank F, Nagar B. Structural and Functional Characterization of Plant ARGONAUTE MID Domains. Methods Mol Biol 2018; 1640:227-239. [PMID: 28608347 DOI: 10.1007/978-1-4939-7165-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of small silencing RNA 5' nucleotides with the MID domain of ARGONAUTE (AGO) proteins provides an anchor point that contributes to strong binding between RNA and protein. The following protocols describe the necessary procedures to characterize the structure of AGO MID domains using X-ray crystallography as well as their interaction with nucleotides that mimic the 5' end of small silencing RNAs using two-dimensional NMR spectroscopy.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA.
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada, H3F 0B1
| |
Collapse
|
5
|
Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH, Osborn MF, Echeverria D, Nikan M, Salomon WE, Roux L, Godinho BMDC, Davis SM, Morrissey DV, Zamore PD, Karumanchi SA, Moore MJ, Aronin N, Khvorova A. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res 2018; 46:2185-2196. [PMID: 29432571 PMCID: PMC5861422 DOI: 10.1093/nar/gky037] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various tissues, independently of the nature of the conjugate or siRNA sequence, and support productive mRNA silencing. Thus, fully chemically stabilized siRNAs may provide a better platform to identify novel moieties (peptides, aptamers, small molecules) for targeted RNAi delivery.
Collapse
Affiliation(s)
- Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Anton A Turanov
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - William E Salomon
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Loïc Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Sarah M Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | | | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
- Department of Medicine, University of Massachusetts Medical School, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, USA
| |
Collapse
|
6
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
7
|
Harikrishna S, Pradeepkumar PI. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:883-896. [DOI: 10.1021/acs.jcim.6b00773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S. Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| | - P. I. Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai−400076, India
| |
Collapse
|
8
|
Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units. Molecules 2015; 20:7602-19. [PMID: 25919280 PMCID: PMC6272285 DOI: 10.3390/molecules20057602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
The understanding of the mechanisms behind nucleotide recognition by Argonaute 2, core protein of the RNA-induced silencing complex, is a key aspect in the optimization of small interfering RNAs (siRNAs) activity. To date, great efforts have been focused on the modification of certain regions of siRNA, such as the 3'/5'-termini and the seed region. Only a few reports have described the roles of central positions flanking the cleavage site during the silence process. In this study, we investigate the potential correlations between the thermodynamic and silencing properties of siRNA molecules carrying, at internal positions, an acyclic L-threoninol nucleic acid (aTNA) modification. Depending on position, the silencing is weakened or impaired. Furthermore, we evaluate the contribution of mismatches facing either a natural nucleotide or an aTNA modification to the siRNA potency. The position 11 of the antisense strand is more permissive to mismatches and aTNA modification, in respect to the position 10. Additionally, comparing the ON-/OFF-target silencing of central mismatched siRNAs with 5'-terminal modified siRNA, we concluded: (i) central perturbation of duplex pairing features weights more on potency rather than silencing asymmetry; (ii) complete bias for the ON-target silencing can be achieved with single L-threoninol modification near the 5'-end of the sense strand.
Collapse
|
9
|
Smalheiser NR, Gomes OLA. Mammalian Argonaute-DNA binding? Biol Direct 2014; 10:27. [PMID: 25472905 PMCID: PMC4258305 DOI: 10.1186/s13062-014-0027-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022] Open
Abstract
When a field shares the consensus that a particular phenomenon does NOT occur, this may reflect extensive experimental investigations with negative outcomes, or may represent the “common sense” position based on current knowledge and established ways of thinking. The current consensus of the RNA field is that eukaryotic Argonaute (Ago) proteins employ RNA guides and target other RNAs. The alternative -- that eukaryotic Ago has biologically important interactions with DNA in vivo – has not been seriously considered, in part because the only role contemplated for DNA was as a guide strand, and in part because it did not seem plausible that any natural source of suitable DNAs exists in eukaryotic cells. However, eukaryotic Argonaute domains bind DNA in the test tube, and several articles report that small inhibitory double-stranded DNAs do have the ability to silence target RNAs in a sequence-dependent (though poorly characterized) manner. A search of the literature identified potential DNA binding partners for Ago, including (among others) single-stranded DNAs residing in extracellular vesicles, and cytoplasmic satellite-repeat DNA fragments that are associated with the plasma membrane and transcribed by Pol II. It is interesting to note that both cytoplasmic and extracellular vesicle DNA are expressed at greatly elevated levels in cancer cells relative to normal cells. In such a pathological scenario, if not under normal conditions, there may be appreciable binding of Ago to DNA despite its lower affinity compared to RNA. If so, DNA might displace Ago from binding to its normal partners (miRNAs, siRNAs and other short ncRNAs), disrupting tightly controlled post-transcriptional gene silencing processes that are vital to correct functioning of a normal cell. The possible contribution to cancer pathogenesis is a strong motivator for further investigation of Ago-DNA binding. More generally, this case underscores the need for better informatics tools to allow investigators to analyze the state of a given scientific question at a high-level and to identify possible new research directions. Reviewers: This article was reviewed by Eugene Koonin, Kira S. Makarova, Alexander Maxwell Burroughs (nominated by L Aravind), and Isidore Rigoutsos. Open peer review: Reviewed by Eugene Koonin, Kira S. Makarova, Alexander Maxwell Burroughs (nominated by L Aravind), and Isidore Rigoutsos. For the full reviews, please go to the Reviewers’ comments section.
Collapse
|
10
|
Anzahaee MY, Deleavey GF, Le PU, Fakhoury J, Petrecca K, Damha MJ. Arabinonucleic acids: 2'-stereoisomeric modulators of siRNA activity. Nucleic Acid Ther 2014; 24:336-43. [PMID: 25162466 DOI: 10.1089/nat.2014.0496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have investigated, for the first time, short interfering duplexes containing arabinonucleotides (ANA; the 2'-stereoisomer of RNA), as well as combinations of ANA with RNA, and their 2'-fluorinated derivatives 2F-ANA and/or 2'F-RNA. The results show that ANA is especially well accommodated in the sense strand of small interfering RNA (siRNA) duplexes, which can be extensively modified with little effect on potency. Furthermore, combining ANA with RNA and 2'F-ANA in siRNA passenger strands, particularly in patterns that bias duplex thermal stability, produces duplexes with similar (and sometimes enhanced) potency compared with native siRNA. Effective patterns of modification were identified against firefly luciferase screens in HeLa cells and then applied to knockdown of down-regulated in renal cell carcinoma (DRR), a novel and clinically tractable target for the treatment of glioblastoma.
Collapse
|