1
|
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O’Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting siRNA scaffold supports potent two-gene modulation in the central nervous system. Nucleic Acids Res 2024; 52:6099-6113. [PMID: 38726879 PMCID: PMC11194107 DOI: 10.1093/nar/gkae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sam Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Dan O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sarah Allen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| |
Collapse
|
2
|
Abstract
PURPOSE One of the most important serious malignancies is gastric cancer (GC) with a high mortality globally. In this way, beside the environmental factors, genetic parameter has a remarkable effective fluctuation in GC. Correspondingly, telomeres are nucleoprotein structures measuring the length of telomeres and they have special potential in diagnosis of various types of cancers. Defect protection of the telomeric length initiates the instability of the genome during cancer, including gastric cancer. The most common way of maintaining telomere length is the function of the telomerase enzyme that replicates the TTAGGG to the end of the 3' chromosome. METHODS In this review, we want to discuss the alterations of hTERT repression on the modification of TERRA gene expression in conjunction with the importance of telomere and telomerase in GC. RESULTS The telomerase enzyme contains two essential components called telomerase reverse transcriptase (hTERT) and RNA telomerase (hTR, hTERC). Deregulation of hTERT plays a key role in the multistage process of tumorigenicity and anticancer drug resistance. The direct relationship between telomerase activity and hTERT has led to hTERT to be considered a key target for cancer treatment. Recent results show that telomeres are transcribed into telomeric repeat-containing RNA (TERRA) in mammalian cells and are long noncoding RNAs (lncRNAs) identified in different tissues. In addition, most chemotherapy methods have a lot of side effects on normal cells. CONCLUSION Telomere and telomerase are useful therapeutic goal. According to the main roles of hTERT in tumorigenesis, growth, migration, and cancer invasion, hTERT and regulatory mechanisms that control the expression of hTERT are attractive therapeutic targets for cancer treatment.
Collapse
|
3
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
4
|
Delivery of ionizable hydrophilic drugs based on pharmaceutical formulation of ion pairs and ionic liquids. Eur J Pharm Biopharm 2020; 156:203-218. [DOI: 10.1016/j.ejpb.2020.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
|
5
|
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214:92-104. [PMID: 31404520 PMCID: PMC6848774 DOI: 10.1016/j.trsl.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Cancer is a significant health concern worldwide and its clinical treatment presents many challenges. Consequently, much research effort has focused on the development of new anticancer drugs to combat this disease. One area of exploration, in particular, has been in the therapeutic application of RNA interference (RNAi). Although RNAi appears to be an attractive therapeutic tool for the treatment of cancer, one of the primary obstacles towards its pervasive use in the clinic has been cell/tissue type-specific cytosolic delivery of therapeutic small interfering RNA (siRNA) molecules. Consequently, varied drug delivery platforms have been developed and widely explored for siRNA delivery. Among these candidate drug delivery systems, peptides have shown great promise as siRNA carriers due to their varied physiochemical properties and functions, simple formulations, and flexibility in design. In this review, we will focus on distinguishing between the different classes of peptide carriers based on their functions, as well as summarize and discuss the various design strategies and advancements that have been made in circumventing the barriers to siRNA delivery for cancer treatment. Resolution of these challenges by peptide carriers will accelerate the translation of RNAi-based therapies to the clinic.
Collapse
Affiliation(s)
- James C Cummings
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Haiwen Zhang
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Andrew Jakymiw
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
| |
Collapse
|
6
|
Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One 2018; 13:e0197246. [PMID: 29775471 PMCID: PMC5959063 DOI: 10.1371/journal.pone.0197246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.
Collapse
|
7
|
Li T, Zhu YY, Ji Y, Zhou S. Interfering RNA with multi-targets for efficient gene suppression in HCC cells. Int J Mol Med 2018. [PMID: 29532863 DOI: 10.3892/ijmm.2018.3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA interference (RNAi) technology has been widely used in therapeutics development, especially multiple targeted RNAi strategy, which is a better method for multiple gene suppression. In the study, interfering RNAs (iRNAs) were designed for carrying two or three different siRNA sequences in different secondary structure formats (loop or cloverleaf). By using these types of iRNAs, co-inhibition of survivin and B-cell lymphoma-2 (Bcl-2) was investigated in hepatocellular carcinoma (HCC) cells, and we obtained promising gene silencing effects without showing undesirable interferon response. Furthermore, suppression effects on proliferation, invasion, and induced apoptosis in HCC cells were validated. The results suggest that long iRNAs with secondary structure may be a preferred strategy for multigenic disease therapy, especially for cancer and viral gene therapy and their iRNA drug development.
Collapse
Affiliation(s)
- Tiejun Li
- Small RNA Technology and Application Institute, Nantong University, Nantong 226016, P.R. China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong 226016, P.R. China
| | - Yi Ji
- Small RNA Technology and Application Institute, Nantong University, Nantong 226016, P.R. China
| | - Songfeng Zhou
- Small RNA Technology and Application Institute, Nantong University, Nantong 226016, P.R. China
| |
Collapse
|
8
|
Kim Y, Kang YG, Choe JY, Lee D, Shin C, Hong SW, Lee DK. RNA Interference-Mediated Gene Silencing by Branched Tripodal RNAs Does Not Require Dicer Processing. Nucleic Acid Ther 2018; 28:44-49. [PMID: 29195056 DOI: 10.1089/nat.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specific gene silencing through RNA interference (RNAi) holds great promise as the next-generation therapeutic development platform. Previously, we have shown that branched, tripodal interfering RNA (tiRNA) structures could simultaneously trigger RNAi-mediated gene silencing of three target genes with 38 nt-long guide strands associated with Argonaute 2. Herein, we show that the branched RNA structure can trigger effective gene silencing in Dicer knockout cell line, demonstrating that the Dicer-mediated processing is not required for tiRNA activity. The finding of this study confirms the flexibility of the structure of RNAi triggers as well as the length of the guide strand in RNAi-mediated gene silencing.
Collapse
Affiliation(s)
- Yanghee Kim
- 1 Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University , Suwon, Republic of Korea
| | - Young Gyu Kang
- 1 Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University , Suwon, Republic of Korea
| | - Jeong Yong Choe
- 1 Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University , Suwon, Republic of Korea
| | - Dooyoung Lee
- 2 Department of Agricultural Biotechnology, Seoul National University , Seoul, Republic of Korea
| | - Chanseok Shin
- 2 Department of Agricultural Biotechnology, Seoul National University , Seoul, Republic of Korea
| | - Sun Woo Hong
- 3 OliX Pharmaceuticals, Inc. , Suwon, Republic of Korea
| | - Dong-Ki Lee
- 1 Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University , Suwon, Republic of Korea
- 3 OliX Pharmaceuticals, Inc. , Suwon, Republic of Korea
| |
Collapse
|
9
|
Valdor M, Wagner A, Röhrs V, Berg J, Fechner H, Schröder W, Tzschentke TM, Bahrenberg G, Christoph T, Kurreck J. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 2017; 14:1744806917749669. [PMID: 29212407 PMCID: PMC5805000 DOI: 10.1177/1744806917749669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Collapse
Affiliation(s)
- Markus Valdor
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Anke Wagner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Johanna Berg
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Wolfgang Schröder
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Thomas M Tzschentke
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | | | - Thomas Christoph
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Jens Kurreck
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| |
Collapse
|
10
|
Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms. Bioorg Med Chem 2016; 25:175-186. [PMID: 27810441 DOI: 10.1016/j.bmc.2016.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
Abstract
The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.
Collapse
|
11
|
Li T, Xue Y, Wang G, Gu T, Li Y, Zhu YY, Chen L. Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma. J Cancer 2016; 7:1317-27. [PMID: 27390607 PMCID: PMC4934040 DOI: 10.7150/jca.15157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments.
Collapse
Affiliation(s)
- Tiejun Li
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China;; 2. Small RNA Technology and Application Institute, Nantong University, Nantong, China;; 3. Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Yuwen Xue
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Guilan Wang
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Tingting Gu
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Yunlong Li
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China
| | - York Yuanyuan Zhu
- 2. Small RNA Technology and Application Institute, Nantong University, Nantong, China;; 3. Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- 1. Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|
12
|
Derlig K, Gießl A, Brandstätter JH, Enz R, Dahlhaus R. Studying Protein Function and the Role of Altered Protein Expression by Antibody Interference and Three-dimensional Reconstructions. J Vis Exp 2016:53049. [PMID: 27167171 PMCID: PMC4941955 DOI: 10.3791/53049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A strict management of protein expression is not only essential to every organism alive, but also an important strategy to investigate protein functions in cellular models. Therefore, recent research invented different tools to target protein expression in mammalian cell lines or even animal models, including RNA and antibody interference. While the first strategy has gathered much attention during the past two decades, peptides mediating a translocation of antibody cargos across cellular membranes and into cells, obtained much less interest. In this publication, we provide a detailed protocol how to utilize a peptide carrier named Chariot in human embryonic kidney cells as well as in primary hippocampal neurons to perform antibody interference experiments and further illustrate the application of three-dimensional reconstructions in analyzing protein function. Our findings suggest that Chariot is, probably due to its nuclear localization signal, particularly well-suited to target proteins residing in the soma and the nucleus. Remarkably, when applying Chariot to primary hippocampal cultures, the reagent turned out to be surprisingly well accepted by dissociated neurons.
Collapse
Affiliation(s)
- Kristin Derlig
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg
| | | | - Ralf Enz
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg
| | - Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nuremberg;
| |
Collapse
|
13
|
ANDRÉ NAYARADELGADO, SILVA VIVIANEALINEOLIVEIRA, WATANABE MARIAANGELICAEHARA, DE LUCCA FERNANDOLUIZ. Knockdown of chemokine receptor CXCR4 gene by RNA interference: Effects on the B16-F10 melanoma growth. Oncol Rep 2016; 35:2419-24. [DOI: 10.3892/or.2016.4620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 11/06/2022] Open
|
14
|
Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs. Biomaterials 2016; 76:399-407. [DOI: 10.1016/j.biomaterials.2015.10.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
|
15
|
Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs. Pharmacol Res 2015; 102:123-31. [DOI: 10.1016/j.phrs.2015.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
|
16
|
Young SWS, Stenzel M, Yang JL. Nanoparticle-siRNA: A potential cancer therapy? Crit Rev Oncol Hematol 2015; 98:159-69. [PMID: 26597018 DOI: 10.1016/j.critrevonc.2015.10.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To explore current developments in short interfering RNA (siRNA) delivery systems in nanooncology, in particular nanoparticles that encapsulate siRNA for targeted treatment of cancer. siRNA has a high specificity towards the oncogenic mRNA in cancer cells, while application of nanoparticles can improve stable delivery and enhance efficacy. METHODS A literature search was performed using the terms "siRNA", "nanoparticles", "targeted delivery", and "cancer". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS siRNA anti-cancer drugs utilize endogenous RNAi mechanisms to silence oncogene expression, which promotes cancer remission. However, current delivery methods have poor efficacy, requiring assistance by nanoparticles for successful delivery. Recently several preclinical studies have crossed into clinical trials utilizing siRNA nanoparticle therapeutics. CONCLUSION Great potential exists for nano-siRNA drugs in cancer treatment, but issues exist with nanoparticle toxicity and off target siRNA effects. Further research is needed in this rapidly developing and promising field of nano-siRNA drugs.
Collapse
Affiliation(s)
- Samuel Wang Sherng Young
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
siRNA Versus miRNA as Therapeutics for Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e252. [PMID: 26372022 PMCID: PMC4877448 DOI: 10.1038/mtna.2015.23] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023]
Abstract
Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.
Collapse
|
18
|
Jabgunde AM, Molina AG, Virta P, Lönnberg H. Preparation of a disulfide-linked precipitative soluble support for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks. Beilstein J Org Chem 2015; 11:1553-60. [PMID: 26664575 PMCID: PMC4660909 DOI: 10.3762/bjoc.11.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
The preparation of a disulfide-tethered precipitative soluble support and its use for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks is described. To obtain the building blocks, N-acyl protected 2´-deoxy-5´-O-(4,4´-dimethoxytrityl)ribonucleosides were phosphorylated with bis(benzotriazol-1-yl) 2-chlorophenyl phosphate. The "outdated" phosphotriester strategy, based on coupling of P(V) building blocks in conjunction with quantitative precipitation of the oligodeoxyribonucleotide with MeOH is applied. Subsequent release of the resulting phosphate and base-protected oligodeoxyribonucleotide trimer 3'-pTpdC(Bz)pdG(ibu)-5' as its 3'-(2-chlorophenyl phosphate) was achieved by reductive cleavage of the disulfide bond.
Collapse
Affiliation(s)
- Amit M Jabgunde
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland ; current address: Rega Institute for Medical Research, Minderbroedersstraat 10, KU Leuven, 3000- Leuven, Belgium
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
19
|
Liu K, Zhou W, Chen H, Pan H, Sun X, You Q. Autologous vein graft stenosis inhibited by orphan nuclear receptor Nur77-targeted siRNA. Vascul Pharmacol 2015; 73:64-70. [PMID: 26276525 DOI: 10.1016/j.vph.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 07/30/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
Abstract
Neointimal hyperplasia plays an important role in autologous vein graft stenosis, and orphan receptor TR3/nur77 (Nur77) might play an essential role, but the mechanisms are still unclear. Here, we investigated the function of Nur77 in autologous vein graft stenosis. Rat vascular smooth muscle cell A7r5 was used for evaluating the function of Nur77 and screen siRNAs. Meanwhile, rat vein graft models were constructed for investigating the stenosis inhibition effects of Nur77-targeted siRNAs. The mRNA and protein levels of Nur77 were highly expressed in A7r5 cell, and could be significantly inhibited by the pre-designed siRNAs; the proliferation of A7r5 cell was also inhibited by the siRNAs. Furthermore, the intimal thickening in rat vein graft models was inhibited when knocking down the expression of Nur77 by siRNA. The results suggest that Nur77-targeted siRNA can inhibit autologous vein graft stenosis, Nur77 may play an important role in autologous vein graft stenosis, and Nur77 targeted siRNAs may be a therapy method for anti-stenosis of autologous vein graft.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wen Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | - Haiyan Pan
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaohui Sun
- Department of Cardiology, Nantong Geriatric Rehabilitation Hosptial, Nantong 226001, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
20
|
A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 2015. [PMID: 26205122 PMCID: PMC4513280 DOI: 10.1038/srep12328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage. To determine how signaling pathways coordinate during the M/E switch and to identify novel genes involved in follicle cell differentiation, we performed an in vivo RNAi screen through induced knockdown of gene expression and examination of Cut expression in follicle cells. We screened 2205 RNAi lines and found 33 genes regulating Cut expression during the M/E switch. These genes were confirmed with the staining of two other Notch signaling downstream factors, Hindsight and Broad, and validated with multiple independent RNAi lines. We applied gene ontology software to find enriched biological meaning and compared our results with other publications to find conserved genes across tissues. Specifically, we found earlier endocycle entry in anterior follicle cells than those in the posterior, identified that the insulin-PI3K pathway participates in the precise M/E switch, and suggested Nejire as a cofactor of Notch signaling during oogenesis.
Collapse
|
21
|
Matsuda S, Keiser K, Nair JK, Charisse K, Manoharan RM, Kretschmer P, Peng CG, V. Kel’in A, Kandasamy P, Willoughby JL, Liebow A, Querbes W, Yucius K, Nguyen T, Milstein S, Maier MA, Rajeev KG, Manoharan M. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol 2015; 10:1181-7. [PMID: 25730476 DOI: 10.1021/cb501028c] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Kristofer Keiser
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Jayaprakash K. Nair
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M. Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Philip Kretschmer
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Chang G. Peng
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Alexander V. Kel’in
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Pachamuthu Kandasamy
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Abigail Liebow
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - William Querbes
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Kristina Yucius
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Stuart Milstein
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin A. Maier
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
22
|
Li T, Zhu YY, Chen L, Sun Y, Yuan J, Graham M, French P. Size unbiased representative enzymatically generated RNAi (SURER) library and application for RNAi therapeutic screens. Nucleic Acid Ther 2014; 25:35-46. [PMID: 25493330 DOI: 10.1089/nat.2014.0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA interference (RNAi) libraries screens have become widely used for small RNA (sRNA) therapeutic targets development. However, conventional enzymatically libraries, typically prepared using the type 2 restriction enzyme MmeI, produce sRNAs between 18 and 20 bp, much shorter than the usual lengths of 19-23 bp. Here we develop a size unbiased representative enzymatically generated RNAi (SURER) library, which employs type 3 restriction modification enzyme EcoP15I to produce sRNAs ranging from 19 to 23 bp using a group of rationally designed linkers, which can completely mimic the length of sRNAs naturally generated by Dicer enzyme in living cells, and the screening results of SURER libraries showed high recombination rate and knockdown efficiency. SURER library provides a useful tool for RNAi therapeutics screening in a fast and simple way.
Collapse
Affiliation(s)
- Tiejun Li
- 1 Small RNA Technology and Application Institute, Nantong University , Nantong, China
| | | | | | | | | | | | | |
Collapse
|