1
|
Tanna S, Doshi G, Godad A. siRNA as potential therapeutic strategy for hypertension. Eur J Pharmacol 2024; 969:176467. [PMID: 38431244 DOI: 10.1016/j.ejphar.2024.176467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Hypertension, a well-known cardiovascular disorder noticed by rise in blood pressure, poses a significant global health challenge. The development RNA interfering (RNAi)-based therapies offers a ground-breaking molecular tool, holds promise for addressing hypertension's intricate molecular mechanisms. Harnessing the power of small interfering RNA (siRNA), researchers aim to selectively target and modulate genes associated with hypertension. Furthermore, they aim to downregulate the levels of mRNA by activating cellular nucleases in response to sequence homology between the siRNA and the corresponding mRNA molecule. As a result, genes involved in the cause of disorders linked to a known genetic background can be silenced using siRNA strategy. In the realm of hypertension, siRNA therapy emerges as a potential therapy for prognostics, diagnostics and treatments. It plays an important role in execution of targeting suppression of genes involved in vascular tone regulation, sodium handling, and pathways contributing to high blood pressure. A clinical trial involving intervention like angiotensinogen siRNA (AGT siRNA) is currently being carried out to treat hypertension. Genetic correlations between uromodulin (UMOD) and hypertension are investigated as emerging Non AGT siRNA target. Furthermore, expression of UMOD is responsible for regulation of sodium by modulating the tumor necrosis factor-α and regulating the Na + -K + -2Cl-cotransporter (NKCC2) in the thick ascending limb, which makes it an important target for blood pressure regulation.
Collapse
Affiliation(s)
- Srushti Tanna
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
2
|
Terada C, Oh K, Tsubaki R, Chan B, Aibara N, Ohyama K, Shibata MA, Wada T, Harada-Shiba M, Yamayoshi A, Yamamoto T. Dynamic and static control of the off-target interactions of antisense oligonucleotides using toehold chemistry. Nat Commun 2023; 14:7972. [PMID: 38042877 PMCID: PMC10693639 DOI: 10.1038/s41467-023-43714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.
Collapse
Affiliation(s)
- Chisato Terada
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- JSPS Research Fellow (DC1), Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kaho Oh
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryutaro Tsubaki
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Asako Yamayoshi
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Yamamoto
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
3
|
Dewaele S, Delhaye L, De Paepe B, Bogaert B, Martinez R, Anckaert J, Yigit N, Nuytens J, Van Coster R, Eyckerman S, Raemdonck K, Mestdagh P. mTOR Inhibition Enhances Delivery and Activity of Antisense Oligonucleotides in Uveal Melanoma Cells. Nucleic Acid Ther 2023; 33:248-264. [PMID: 37389884 DOI: 10.1089/nat.2023.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Owing to a lack of effective treatments, patients with metastatic disease have a median survival time of 6-12 months. We recently demonstrated that the Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is essential for UM cell survival and that antisense oligonucleotide (ASO)-mediated silencing of SAMMSON impaired cell viability and tumor growth in vitro and in vivo. By screening a library of 2911 clinical stage compounds, we identified the mammalian target of rapamycin (mTOR) inhibitor GDC-0349 to synergize with SAMMSON inhibition in UM. Mechanistic studies revealed that mTOR inhibition enhanced uptake and reduced lysosomal accumulation of lipid complexed SAMMSON ASOs, improving SAMMSON knockdown and further decreasing UM cell viability. We found mTOR inhibition to also enhance target knockdown in other cancer cell lines as well as normal cells when combined with lipid nanoparticle complexed or encapsulated ASOs or small interfering RNAs (siRNAs). Our results are relevant to nucleic acid treatment in general and highlight the potential of mTOR inhibition to enhance ASO and siRNA-mediated target knockdown.
Collapse
Affiliation(s)
- Shanna Dewaele
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Bram Bogaert
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ramiro Martinez
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Rudy Van Coster
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Sven Eyckerman
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
5
|
Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:113-126. [PMID: 36336357 DOI: 10.1016/j.lssr.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kierzek R, Turner DH. Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3'-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA (NEW YORK, N.Y.) 2022; 28:508-522. [PMID: 34983822 PMCID: PMC8925974 DOI: 10.1261/rna.078951.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.
Collapse
Affiliation(s)
- Andrew D Kauffmann
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Walter N Moss
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
9
|
Khurshid S, Montes M, Comiskey DF, Shane B, Matsa E, Jung F, Brown C, Bid HK, Wang R, Houghton PJ, Roberts R, Rigo F, Chandler D. Splice-switching of the insulin receptor pre-mRNA alleviates tumorigenic hallmarks in rhabdomyosarcoma. NPJ Precis Oncol 2022; 6:1. [PMID: 35017650 PMCID: PMC8752779 DOI: 10.1038/s41698-021-00245-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric tumor with a poor prognosis for metastasis and recurrent disease. Large-scale sequencing endeavors demonstrate that Rhabdomyosarcomas have a dearth of precisely targetable driver mutations. However, IGF-2 signaling is known to be grossly altered in RMS. The insulin receptor (IR) exists in two alternatively spliced isoforms, IR-A and IR-B. The IGF-2 signaling molecule binds both its innate IGF-1 receptor as well as the insulin receptor variant A (IR-A) with high affinity. Mitogenic and proliferative signaling via the canonical IGF-2 pathway is, therefore, augmented by IR-A. This study shows that RMS patients express increased IR-A levels compared to control tissues that predominantly express the IR-B isoform. We also found that Hif-1α is significantly increased in RMS tumors, portraying their hypoxic phenotype. Concordantly, the alternative splicing of IR adapts to produce more IR-A in response to hypoxic stress. Upon examining the pre-mRNA structure of the gene, we identified a potential hypoxia-responsive element, which is also the binding site for the RNA-binding protein CUG-BP1 (CELF1). We designed Splice Switching Oligonucleotides (SSO) against this binding site to decrease IR-A levels in RMS cell lines and, consequently, rescue the IR-B expression levels. SSO treatment resulted in a significant reduction in cell proliferation, migration, and angiogenesis. Our data shows promising insight into how impeding the IGF-2 pathway by reducing IR-A expression mitigates tumor growth. It is evident that Rhabdomyosarcomas use IR alternative splicing as yet another survival strategy that can be exploited as a therapeutic intervention in conjunction with already established anti-IGF-1 receptor therapies.
Collapse
Affiliation(s)
- Safiya Khurshid
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Matias Montes
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Daniel F Comiskey
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Brianne Shane
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Eleftheria Matsa
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Francesca Jung
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Chelsea Brown
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | | | - Ruoning Wang
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter J Houghton
- Greenhey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Ryan Roberts
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Dawn Chandler
- Department of Pediatrics and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
10
|
Zhao J, Kennedy SD, Turner DH. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. J Chem Theory Comput 2022; 18:1241-1254. [PMID: 34990548 DOI: 10.1021/acs.jctc.1c00643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-stranded regions of RNA are important for folding of sequences into 3D structures and for design of therapeutics targeting RNA. Prediction of ensembles of 3D structures for single-stranded regions often involves classical mechanical approximations of interactions defined by quantum mechanical calculations on small model systems. Nuclear magnetic resonance (NMR) spectra and molecular dynamics (MD) simulations of short single strands provide tests for how well the approximations model many of the interactions. Here, the NMR spectra for UCUCGU at 2, 15, and 30 °C are compared to simulations with the AMBER force fields, OL3 and ROC-RNA. This is the first such comparison to an oligoribonucleotide containing an internal guanosine nucleotide (G). G is particularly interesting because of its many H-bonding groups, large dipole moment, and proclivity for both syn and anti conformations. Results reveal formation of a G amino to phosphate non-bridging oxygen H-bond. The results also demonstrate dramatic differences in details of the predicted structures. The variations emphasize the dependence of predictions on individual parameters and their balance with the rest of the force field. The NMR data can serve as a benchmark for future force fields.
Collapse
|
11
|
Holgersen EM, Gandhi S, Zhou Y, Kim J, Vaz B, Bogojeski J, Bugno M, Shalev Z, Cheung-Ong K, Gonçalves J, O'Hara M, Kron K, Verby M, Sun M, Kakaradov B, Delong A, Merico D, Deshwar AG. Transcriptome-Wide Off-Target Effects of Steric-Blocking Oligonucleotides. Nucleic Acid Ther 2021; 31:392-403. [PMID: 34388351 PMCID: PMC8713556 DOI: 10.1089/nat.2020.0921] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Steric-blocking oligonucleotides (SBOs) are short, single-stranded nucleic acids designed to modulate gene expression by binding to RNA transcripts and blocking access from cellular machinery such as splicing factors. SBOs have the potential to bind to near-complementary sites in the transcriptome, causing off-target effects. In this study, we used RNA-seq to evaluate the off-target differential splicing events of 81 SBOs and differential expression events of 46 SBOs. Our results suggest that differential splicing events are predominantly hybridization driven, whereas differential expression events are more common and driven by other mechanisms (including spurious experimental variation). We further evaluated the performance of in silico screens for off-target splicing events, and found an edit distance cutoff of three to result in a sensitivity of 14% and false discovery rate (FDR) of 99%. A machine learning model incorporating splicing predictions substantially improved the ability to prioritize low edit distance hits, increasing sensitivity from 4% to 26% at a fixed FDR of 90%. Despite these large improvements in performance, this approach does not detect the majority of events at an FDR <99%. Our results suggest that in silico methods are currently of limited use for predicting the off-target effects of SBOs, and experimental screening by RNA-seq should be the preferred approach.
Collapse
Affiliation(s)
- Erle M. Holgersen
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Shreshth Gandhi
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Yongchao Zhou
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Jinkuk Kim
- Deep Genomics, Inc., Toronto,
Canada
- Graduate School of Medical Science and
Engineering, KAIST, Daejeon, Republic of Korea
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Brandon Vaz
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Jovanka Bogojeski
- Deep Genomics, Inc., Toronto,
Canada
- Providence Therapeutics, Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Magdalena Bugno
- Deep Genomics, Inc., Toronto,
Canada
- The Hospital for Sick Children, Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Zvi Shalev
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Kahlin Cheung-Ong
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - João Gonçalves
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Matthew O'Hara
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Ken Kron
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Marta Verby
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Mark Sun
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Boyko Kakaradov
- Deep Genomics, Inc., Toronto,
Canada
- Skyhawk Therapeutics, Waltham,
Massachusetts, USA
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Andrew Delong
- Deep Genomics, Inc., Toronto,
Canada
- Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Daniele Merico
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Amit G. Deshwar
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| |
Collapse
|
12
|
Hirabayashi Y, Maki K, Kinoshita K, Nakazawa T, Obika S, Naota M, Watanabe K, Suzuki M, Arato T, Fujisaka A, Fueki O, Ito K, Onodera H. Considerations of the Japanese Research Working Group for the ICH S6 & Related Issues Regarding Nonclinical Safety Assessments of Oligonucleotide Therapeutics: Comparison with Those of Biopharmaceuticals. Nucleic Acid Ther 2021; 31:114-125. [PMID: 33470890 PMCID: PMC7997717 DOI: 10.1089/nat.2020.0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
This white paper summarizes the current consensus of the Japanese Research Working Group for the ICH S6 & Related Issues (WGS6) on strategies for the nonclinical safety assessment of oligonucleotide-based therapeutics (ONTs), specifically focused on the similarities and differences to biotechnology-derived pharmaceuticals (biopharmaceuticals). ONTs, like biopharmaceuticals, have high species and target specificities. However, ONTs have characteristic off-target effects that clearly differ from those of biopharmaceuticals. The product characteristics of ONTs necessitate specific considerations when planning nonclinical studies. Some ONTs have been approved for human use and many are currently undergoing nonclinical and/or clinical development. However, as ONTs are a rapidly evolving class of drugs, there is still much to learn to achieve optimal strategies for the development of ONTs. There are no formal specific guidelines, so safety assessments of ONTs are principally conducted by referring to published white papers and conventional guidelines for biopharmaceuticals and new chemical entities, and each ONT is assessed on a case-by-case basis. The WGS6 expects that this report will be useful in considering nonclinical safety assessments and developing appropriate guidelines specific for ONTs.
Collapse
Affiliation(s)
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kiyoshi Kinoshita
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Misaki Naota
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kazuto Watanabe
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Mutsumi Suzuki
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Osamu Fueki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kosuke Ito
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | | |
Collapse
|
13
|
Banerjee D, Tateishi-Karimata H, Ohyama T, Ghosh S, Endoh T, Takahashi S, Sugimoto N. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Res 2020; 48:12042-12054. [PMID: 32663294 PMCID: PMC7708073 DOI: 10.1093/nar/gkaa572] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Collapse
Affiliation(s)
- Dipanwita Banerjee
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tatsuya Ohyama
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Saptarshi Ghosh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
14
|
Michel S, Schirduan K, Shen Y, Klar R, Tost J, Jaschinski F. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines. Mol Diagn Ther 2020; 25:77-85. [DOI: 10.1007/s40291-020-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
|
15
|
Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proc Natl Acad Sci U S A 2020; 117:14194-14201. [PMID: 32522884 DOI: 10.1073/pnas.1920886117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (∆H°, ∆S°, and ∆G°37) and melting temperatures (T m) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.
Collapse
|
16
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|