1
|
Vinjamuri BP, Pan J, Peng P. A Review on Commercial Oligonucleotide Drug Products. J Pharm Sci 2024; 113:1749-1768. [PMID: 38679232 DOI: 10.1016/j.xphs.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.
Collapse
Affiliation(s)
- Bhavani Prasad Vinjamuri
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| | - Jiayi Pan
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States
| | - Paul Peng
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| |
Collapse
|
2
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Kathrin Stavenhagen
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Clément Paris
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Rikke Dueholm
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Camille Kurek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Felix Gnerlich
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Tomas Leek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Werngard Czechtizky
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
3
|
Prostko P, Radziński P, Ciach M, Liu Y, Startek M, Lermyte F, De Vijlder T, Gambin A, Appeltans S, Valkenborg D. MIND4OLIGOS: Determining the Monoisotopic Mass of Oligonucleotides Observed in High-Resolution Mass Spectrometry. Anal Chem 2024; 96:9343-9352. [PMID: 38804718 PMCID: PMC11342294 DOI: 10.1021/acs.analchem.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Oligonucleotide therapeutics have emerged as an important class of drugs offering targeted therapeutic strategies that complement traditional modalities, such as monoclonal antibodies and small molecules. Their unique ability to precisely modulate gene expression makes them vital for addressing previously undruggable targets. A critical aspect of developing these therapies is characterizing their molecular composition accurately. This includes determining the monoisotopic mass of oligonucleotides, which is essential for identifying impurities, degradants, and modifications that can affect the drug efficacy and safety. Mass spectrometry (MS) plays a pivotal role in this process, yet the accurate interpretation of complex mass spectra remains challenging, especially for large molecules, where the monoisotopic peak is often undetectable. To address this issue, we have adapted the MIND algorithm, originally developed for top-down proteomics, for use with oligonucleotide data. This adaptation allows for the prediction of monoisotopic mass from the more readily detectable, most-abundant peak mass, enhancing the ability to annotate complex spectra of oligonucleotides. Our comprehensive validation of this modified algorithm on both in silico and real-world oligonucleotide data sets has demonstrated its effectiveness and reliability. To facilitate wider adoption of this advanced analytical technique, we have encapsulated the enhanced MIND algorithm in a user-friendly Shiny application. This online platform simplifies the process of annotating complex oligonucleotide spectra, making advanced mass spectrometry analysis accessible to researchers and drug developers. The application is available at https://valkenborg-lab.shinyapps.io/mind4oligos/.
Collapse
Affiliation(s)
- Piotr Prostko
- Faculty
of Science, Data Science Institute, Interuniversity Institute for
Biostatistics and statistical Bioinformatics, Center for Statistics, Hasselt University, Agoralaan, Diepenbeek BE 3500, Belgium
| | - Piotr Radziński
- Institute
of Informatics, University of Warsaw, Banacha 2, Warszawa PL 02-097, Poland
| | - Michał Ciach
- Institute
of Informatics, University of Warsaw, Banacha 2, Warszawa PL 02-097, Poland
| | - Youzhong Liu
- Johnson
& Johnson Innovative Medicine, Therapeutics Development &
Supply, Turnhoutseweg
30, Beerse BE 2340, Belgium
| | - Michał Startek
- Institute
of Informatics, University of Warsaw, Banacha 2, Warszawa PL 02-097, Poland
- University
Medical Center of the Johannes Gutenberg University Mainz, Institute
of Immunology, Mainz, Rheinland-Pfalz 55131, Germany
| | - Frederik Lermyte
- Department
of Chemistry, Technical University of Darmstadt, Darmstadt, Hessen 64289, Germany
- Centre
for
Synthetic Biology, Technical University
of Darmstadt, Darmstadt, Hessen 64289, Germany
| | - Thomas De Vijlder
- Johnson
& Johnson Innovative Medicine, Therapeutics Development &
Supply, Turnhoutseweg
30, Beerse BE 2340, Belgium
| | - Anna Gambin
- Institute
of Informatics, University of Warsaw, Banacha 2, Warszawa PL 02-097, Poland
| | - Simon Appeltans
- Faculty
of Science, Data Science Institute, Interuniversity Institute for
Biostatistics and statistical Bioinformatics, Center for Statistics, Hasselt University, Agoralaan, Diepenbeek BE 3500, Belgium
| | - Dirk Valkenborg
- Faculty
of Science, Data Science Institute, Interuniversity Institute for
Biostatistics and statistical Bioinformatics, Center for Statistics, Hasselt University, Agoralaan, Diepenbeek BE 3500, Belgium
| |
Collapse
|
4
|
Dias DM, Coombes SR, Benstead D, Whittaker DTE, Ray A, Xu J. Advances in the Specificity of Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Based Structural Characterisation Methods for Synthetic Oligonucleotides. J Pharm Sci 2023; 112:2524-2531. [PMID: 37105438 DOI: 10.1016/j.xphs.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Identity testing is a critical part in the development of a therapeutic synthetic oligonucleotide. Tandem Mass Spectrometry (MS/MS) is commonly used for the analysis of oligonucleotides to obtain structural and sequence information, however there are challenges resulting from chemical modifications introduced to improve their pharmacokinetics and stability. For these structurally complex oligonucleotides, Nuclear Magnetic Resonance (NMR) Spectroscopy has found limited use for characterisation and identity testing, as only partial NMR resonance assignment for oligonucleotides is achieved without isotopic labelling methodologies. Regardless of the choice of method used for oligonucleotide analysis, the specificity is of critical importance. In this work, in-source dissociation mass spectrometry and proton (1H) and carbon (13C) NMR at high temperature were used to analyse danvatirsen, a 16 nucleotide phosphorothioate antisense oligonucleotide, and its closely related switch sequences. Both approaches have shown specificity to distinguish danvatirsen from these similar sequences.
Collapse
Affiliation(s)
- David M Dias
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven R Coombes
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - David Benstead
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - David T E Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Andrew Ray
- New Modalities Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jingshu Xu
- Cellzome, Meyerhofstraße, Heidelberg, Germany
| |
Collapse
|
5
|
Comprehensive evaluation of zwitterionic hydrophilic liquid chromatography stationary phases for oligonucleotide characterization. J Chromatogr A 2023; 1690:463785. [PMID: 36641941 DOI: 10.1016/j.chroma.2023.463785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/09/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) has been proposed as a valuable alternative to ion-pairing reversed-phase chromatography (IP-RPLC) for oligonucleotide (ON) analysis. In this context, the potential of seven zwitterionic HILIC columns has been evaluated against amide- and poly-hydroxy fructan-functionalized HILIC columns and a C18 column operated under IP-RPLC mode. Based on the retention characteristics of key small molecule pairs, each zwitterionic HILIC column showed a unique radar-shaped profile, suggesting different selectivities for distinct structural differences. Unmodified DNA and RNA samples were then evaluated, and the columns classified based on their retentivity. Two zwitterionic columns were particularly promising in terms of overall resolution, especially for the largest ONs (> 40-mer). Finally, separations between a chemically modified drug-like ON and its closely related impurities were performed. Although the ZIC-cHILIC column showed similar selectivity values as compared to the reference IP-RPLC technique, all columns demonstrated a general decrease in selectivity due to the minor structural differences present in the highly complex samples. This work highlights the utility of zwitterionic HILIC mode for ON analysis and it reveals the importance of understanding columns characteristics - in terms of retention and selectivity - when selecting a stationary phase for specific ON applications.
Collapse
|
6
|
Fillon YA, Akhtar N, Andrews BI, Benstead D, Breitler S, Gronke RS, Olbrich M, Stolee JA, Vandermeersch T. Determination of Purge Factors for Use in Oligonucleotide Control Strategies. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick A. Fillon
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Benjamin I. Andrews
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | | | - Simon Breitler
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert S. Gronke
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Olbrich
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica A. Stolee
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
7
|
Demelenne A, Nys G, Nix C, Fjeldsted JC, Crommen J, Fillet M. Separation of phosphorothioated oligonucleotide diastereomers using multiplexed drift tube ion mobility mass spectrometry. Anal Chim Acta 2022; 1191:339297. [PMID: 35033277 DOI: 10.1016/j.aca.2021.339297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) coupled to drift tube ion mobility spectrometry (DTIMS) was used to separate diastereomers of five-unit oligonucleotides containing 0, 1, 2 or 3 phosphorothioate (PS) linkages. Multiplexed DTIMS (where ions are pulsed into the drift tube according to a pre-encoded sequence) and post-acquisition processing using an innovative demultiplexing tool were investigated. The electric field inside the drift tube was optimized to achieve the highest resolving power. The entrance voltage providing the best two-peak resolution was -1000V with 3-bit multiplexing. Under optimized conditions, the eight diastereomers of an oligonucleotide with three PS linkages (5'-TC∗G∗T∗G-3') could be separated unambiguously. Indeed, those diastereomers differed in their collision cross section (CCS) values. The minimal CCS values difference between two adjacent diastereomers was 0.9% with maximal RSD on CCS values of 0.3%. The use of multiplexed ion mobility and the novel high-resolution demultiplexing tool represents a real breakthrough for resolution enhancement of diastereomers in linear DTIMS.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | | | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium.
| |
Collapse
|
8
|
Lemaitre MM. Individualized Antisense Oligonucleotide Therapies: How to Approach the Challenge of Manufacturing These Oligos from a Chemistry, Manufacturing, and Control-Regulatory Standpoint. Nucleic Acid Ther 2021; 32:101-110. [PMID: 34962152 DOI: 10.1089/nat.2021.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the development of antisense oligonucleotides over more than 30 years and the increasing number of identified unique severely debilitating or life-threatening diseases affecting only 1 person in the world-now referred to as N-of-1 diseases-it is more and more appealing to use antisense technology to treat N-of-1 diseases when they are caused by well-identified mutations in single genes. N-of-1 patients present unique challenges to the health care system because the patient may be, and often is, the single patient in the world with the specific mutation in question, thus requiring an approach particular to that patient. Yet, we now know that there are millions of such patients, requiring scalable solutions. This article offers suggestions on how a specific and very regulated area of the new drug development process, chemistry, manufacturing, and control, could be addressed for N-of-1 oligonucleotides from a regulatory standpoint.
Collapse
|
9
|
Agten A, Prostko P, Geubbelmans M, Liu Y, De Vijlder T, Valkenborg D. A Compositional Model to Predict the Aggregated Isotope Distribution for Average DNA and RNA Oligonucleotides. Metabolites 2021; 11:400. [PMID: 34207227 PMCID: PMC8234063 DOI: 10.3390/metabo11060400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
Structural modifications of DNA and RNA molecules play a pivotal role in epigenetic and posttranscriptional regulation. To characterise these modifications, more and more MS and MS/MS- based tools for the analysis of nucleic acids are being developed. To identify an oligonucleotide in a mass spectrum, it is useful to compare the obtained isotope pattern of the molecule of interest to the one that is theoretically expected based on its elemental composition. However, this is not straightforward when the identity of the molecule under investigation is unknown. Here, we present a modelling approach for the prediction of the aggregated isotope distribution of an average DNA or RNA molecule when a particular (monoisotopic) mass is available. For this purpose, a theoretical database of all possible DNA/RNA oligonucleotides up to a mass of 25 kDa is created, and the aggregated isotope distribution for the entire database of oligonucleotides is generated using the BRAIN algorithm. Since this isotope information is compositional in nature, the modelling method is based on the additive log-ratio analysis of Aitchison. As a result, a univariate weighted polynomial regression model of order 10 is fitted to predict the first 20 isotope peaks for DNA and RNA molecules. The performance of the prediction model is assessed by using a mean squared error approach and a modified Pearson's χ2 goodness-of-fit measure on experimental data. Our analysis has indicated that the variability in spectral accuracy contributed more to the errors than the approximation of the theoretical isotope distribution by our proposed average DNA/RNA model. The prediction model is implemented as an online tool. An R function can be downloaded to incorporate the method in custom analysis workflows to process mass spectral data.
Collapse
Affiliation(s)
- Annelies Agten
- Data Science Institute, UHasselt—Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium; (A.A.); (P.P.); (M.G.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | - Piotr Prostko
- Data Science Institute, UHasselt—Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium; (A.A.); (P.P.); (M.G.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | - Melvin Geubbelmans
- Data Science Institute, UHasselt—Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium; (A.A.); (P.P.); (M.G.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | - Youzhong Liu
- Chemical & Pharmaceutical Development & Supply, Janssen Research & Development, Turnhoutseweg 30, BE 2340 Beerse, Belgium; (Y.L.); (T.D.V.)
| | - Thomas De Vijlder
- Chemical & Pharmaceutical Development & Supply, Janssen Research & Development, Turnhoutseweg 30, BE 2340 Beerse, Belgium; (Y.L.); (T.D.V.)
| | - Dirk Valkenborg
- Data Science Institute, UHasselt—Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium; (A.A.); (P.P.); (M.G.)
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| |
Collapse
|
10
|
McElderry JD, Hill D, Schmitt E, Su X, Stolee J. In-line Phosphoramidite Identification by FTIR to Support Real-Time Oligonucleotide Sequence Confirmation. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Daniel Hill
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Elliott Schmitt
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Xiaoye Su
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| | - Jessica Stolee
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, United States
| |
Collapse
|