1
|
Kostyushev D, Brezgin S, Kostyusheva A, Ponomareva N, Bayurova E, Zakirova N, Kondrashova A, Goptar I, Nikiforova A, Sudina A, Babin Y, Gordeychuk I, Lukashev A, Zamyatnin AA, Ivanov A, Chulanov V. Transient and tunable CRISPRa regulation of APOBEC/AID genes for targeting hepatitis B virus. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:478-493. [PMID: 37187708 PMCID: PMC10176074 DOI: 10.1016/j.omtn.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Corresponding author Dmitry Kostyushev, Laboratory of Genetic Technologies and Drug Development, Sechenov University, 119991 Moscow, Russia.
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Natalia Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | | | - Anna Sudina
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Yurii Babin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Vladimir Chulanov
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
2
|
Kostyushev D, Kostyusheva A, Brezgin S, Ponomareva N, Zakirova NF, Egorshina A, Yanvarev DV, Bayurova E, Sudina A, Goptar I, Nikiforova A, Dunaeva E, Lisitsa T, Abramov I, Frolova A, Lukashev A, Gordeychuk I, Zamyatnin AA, Ivanov A, Chulanov V. Depleting hepatitis B virus relaxed circular DNA is necessary for resolution of infection by CRISPR-Cas9. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:482-493. [PMID: 36865089 PMCID: PMC9972396 DOI: 10.1016/j.omtn.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
CRISPR-Cas9 systems can directly target the hepatitis B virus (HBV) major genomic form, covalently closed circular DNA (cccDNA), for decay and demonstrate remarkable anti-HBV activity. Here, we demonstrate that CRISPR-Cas9-mediated inactivation of HBV cccDNA, frequently regarded as the "holy grail" of viral persistence, is not sufficient for curing infection. Instead, HBV replication rapidly rebounds because of de novo formation of HBV cccDNA from its precursor, HBV relaxed circular DNA (rcDNA). However, depleting HBV rcDNA before CRISPR-Cas9 ribonucleoprotein (RNP) delivery prevents viral rebound and promotes resolution of HBV infection. These findings provide the groundwork for developing approaches for a virological cure of HBV infection by a single dose of short-lived CRISPR-Cas9 RNPs. Blocking cccDNA replenishment and re-establishment from rcDNA conversion is critical for completely clearing the virus from infected cells by site-specific nucleases. The latter can be achieved by widely used reverse transcriptase inhibitors.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Corresponding author: Dmitry Kostyushev, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Malaya Pirogovskaya 20 st., bld. 1, office 207, Moscow 119991, Russia.
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Aleksandra Egorshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
| | - Dmitry V. Yanvarev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Anna Sudina
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina Goptar
- Izmerov Research Institute of Occupational Health, Moscow 105275, Russia
| | | | - Elena Dunaeva
- Central Research Institute of Epidemiology, Moscow 111123, Russia
| | - Tatiana Lisitsa
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ivan Abramov
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow 119435, Russia
| | - Anastasiia Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119991, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Vladimir Chulanov
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
- Department of Infectious Diseases, Sechenov First Moscow State Medical University, Moscow 119146, Russia
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia
| |
Collapse
|
3
|
Kostyusheva AP, Brezgin SA, Ponomareva NI, Goptar IA, Nikiforova AV, Gegechkori VI, Poluektova VB, Turkadze KA, Sudina AE, Chulanov VP, Kostyushev DS. Antiviral Activity of CRISPR/Cas9 Ribonucleoprotein Complexes on a Hepatitis B Virus Model In Vivo. Mol Biol 2022. [DOI: 10.1134/s0026893322060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|