1
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
2
|
Hubbard WB, Dong JF, Cruz MA, Rumbaut RE. Links between thrombosis and inflammation in traumatic brain injury. Thromb Res 2020; 198:62-71. [PMID: 33290884 DOI: 10.1016/j.thromres.2020.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) continues to be a major healthcare problem and there is much to be explored regarding the secondary pathobiology to identify early predictive markers and new therapeutic targets. While documented changes in thrombosis and inflammation in major trauma have been well described, growing evidence suggests that isolated TBI also results in systemic alterations in these mechanisms. Here, we review recent experimental and clinical findings that demonstrate how blood-brain barrier dysfunction, systemic immune response, inflammation, platelet activation, and thrombosis contribute significantly to the pathogenesis of TBI. Despite advances in the links between thrombosis and inflammation, there is a lack of treatment options aimed at both processes and this could be crucial to treating vascular injury, local and systemic inflammation, and secondary ischemic events following TBI. With emerging evidence of newly-identified roles for platelets, leukocytes, the coagulation system and extracellular vesicles in processes of inflammation and thrombosis, there is a growing need to characterize these mechanisms within the context of TBI and whether these changes persist into the chronic phase of injury. Importantly, this review defines areas in need of further research to advance the field and presents a roadmap to identify new diagnostic and treatment options for TBI.
Collapse
Affiliation(s)
- W Brad Hubbard
- Lexington VA Healthcare System, Lexington, KY, United States of America; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, United States of America.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, United States of America; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, United States of America; Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
3
|
Kyyriäinen J, Tapiala J, Lipponen A, Ekolle Ndode-Ekane X, Pitkänen A. Plau/Plaur double-deficiency did not worsen lesion severity or vascular integrity after traumatic brain injury. Neurosci Lett 2020; 729:134935. [PMID: 32360936 DOI: 10.1016/j.neulet.2020.134935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
Binding of urokinase-type plasminogen activator receptor (uPAR) to its ligand uPA or to its plasma membrane partner, platelet-derived growth factor receptor β (PDGFRβ), promotes neuroprotection, cell proliferation, and angiogenesis. Following injury, single deficiency in uPA or uPAR leads in increased tissue loss and compromised vascular remodeling. We hypothesized that double-deficiency of uPAR (Plaur) and uPA (Plau) would result in increased lesion area and poor vascular integrity after traumatic brain injury (TBI). TBI was induced by lateral fluid-percussion injury in Plau/Plaur double-knockout (dKO) and wild-type (Wt) mice. The cortical lesion area was quantified in unfolded cortical maps prepared from thionin-stained sections at 4 d or 30 d post-TBI. The density of PDGFRβ+ pericytes and blood vessels was calculated from immunostained sections. Blood-brain barrier leakage was analyzed using ImageJ® from IgG-immunostained sections. Genotype had no effect on the total area of the cortical lesion at 4 d or 30 d post-TBI (p > 0.05) or its progression as the overall lesion area was comparable at 4 d and 30 d post-TBI in both genotypes (p > 0.05). Subfield analysis, however, indicated that damage to the visual cortex at 4 d post-TBI in dKO-TBI mice was 53 % of that in Wt-TBI mice (p < 0.05). Both genotypes had a higher density of PDGFRβ-positive pericytes at 4 d than at 30 d post-TBI (p < 0.05), but no genotype effect was detected between these time-points (p > 0.05). TBI-induced increase in the density of PDGFRβ+ blood vessels at the region adjacent to the lesion core was comparable in both genotypes (p > 0.05). Genotype had no effect on TBI-induced IgG leakage into the perilesional cortical parenchyma (p > 0.05). Contrary to our expectations, Plau/Plaur double-deficiency did not aggravate TBI-related structural outcome.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Jesse Tapiala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
4
|
Anwer M, Bolkvadze T, Puhakka N, Ndode-Ekane XE, Pitkänen A. Genotype and Injury Effect on the Expression of a Novel Hypothalamic Protein Sushi Repeat-Containing Protein X-Linked 2 (SRPX2). Neuroscience 2019; 415:184-200. [DOI: 10.1016/j.neuroscience.2019.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
5
|
Griemert E, Schwarzmaier SM, Hummel R, Gölz C, Yang D, Neuhaus W, Burek M, Förster CY, Petkovic I, Trabold R, Plesnila N, Engelhard K, Schäfer MK, Thal SC. Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury. Ann Neurol 2019; 85:667-680. [PMID: 30843275 PMCID: PMC6593843 DOI: 10.1002/ana.25458] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Plasminogen activator inhibitor-1 (PAI-1) is the key endogenous inhibitor of fibrinolysis, and enhances clot formation after injury. In traumatic brain injury, dysregulation of fibrinolysis may lead to sustained microthrombosis and accelerated lesion expansion. In the present study, we hypothesized that PAI-1 mediates post-traumatic malfunction of coagulation, with inhibition or genetic depletion of PAI-1 attenuating clot formation and lesion expansion after brain trauma. METHODS We evaluated PAI-1 as a possible new target in a mouse controlled cortical impact (CCI) model of traumatic brain injury. We performed the pharmacological inhibition of PAI-1 with PAI-039 and stimulation by tranexamic acid, and we confirmed our results in PAI-1-deficient animals. RESULTS PAI-1 mRNA was time-dependently upregulated, with a 305-fold peak 12 hours after CCI, which effectively counteracted the 2- to 3-fold increase in cerebral tissue-type/urokinase plasminogen activator expression. PAI-039 reduced brain lesion volume by 26% at 24 hours and 43% at 5 days after insult. This treatment also attenuated neuronal apoptosis and improved neurofunctional outcome. Moreover, intravital microscopy demonstrated reduced post-traumatic thrombus formation in the pericontusional cortical microvasculature. In PAI-1-deficient mice, the therapeutic effect of PAI-039 was absent. These mice also displayed 13% reduced brain damage compared with wild type. In contrast, inhibition of fibrinolysis with tranexamic acid increased lesion volume by 25% compared with vehicle. INTERPRETATION This study identifies impaired fibrinolysis as a critical process in post-traumatic secondary brain damage and suggests that PAI-1 may be a central endogenous inhibitor of the fibrinolytic pathway, promoting a procoagulatory state and clot formation in the cerebral microvasculature. Ann Neurol 2019;85:667-680.
Collapse
Affiliation(s)
- Eva‐Verena Griemert
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Susanne M. Schwarzmaier
- Department of AnesthesiologyLudwig‐Maximilians‐University (LMU) Munich Medical CenterMunichGermany
| | - Regina Hummel
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Christina Gölz
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Dong Yang
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Winfried Neuhaus
- Austrian Institute of Technology, Department Health and EnvironmentMolecular DiagnosticsViennaAustria
| | - Malgorzata Burek
- Department of Anesthesia and Critical CareUniversity of WürzburgWürzburgGermany
| | - Carola Y. Förster
- Department of Anesthesia and Critical CareUniversity of WürzburgWürzburgGermany
| | - Ivan Petkovic
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Raimund Trabold
- Institute for Surgical Research at the Walter Brendel Center of Experimental MedicineUniversity of Munich Medical CenterMunichGermany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) Munich Medical Center, Munich, Germany and Munich Cluster for Systems Neurology (Synergy)MunichGermany
| | - Kristin Engelhard
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Michael K. Schäfer
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
- Focus Program Translational NeuroscienceUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Serge C. Thal
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
- Focus Program Translational NeuroscienceUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| |
Collapse
|
6
|
Kyyriäinen J, Bolkvadze T, Koivisto H, Lipponen A, Pérez LO, Ekolle Ndode-Ekane X, Tanila H, Pitkänen A. Deficiency of urokinase-type plasminogen activator and its receptor affects social behavior and increases seizure susceptibility. Epilepsy Res 2019; 151:67-74. [PMID: 30836238 DOI: 10.1016/j.eplepsyres.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/23/2019] [Indexed: 12/25/2022]
Abstract
Extracellular proteolysis initiated by the binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) regulates the development of inhibitory neuronal circuits in the cerebral cortex and tissue remodeling after epileptogenic brain injury. To study the function of different components of the uPA-uPAR system on behavior and epileptogenesis, and to complement our previous studies on naïve and injured mice deficient in the uPA-encoding gene Plau or the uPAR-encoding gene Plaur, we analyzed the behavioral phenotype, seizure susceptibility, and perineuronal nets surrounding parvalbumin-positive inhibitory interneurons in Plau and Plaur (double knockout dKO) mice. In a climbing test, dKO mice showed reduced interest towards the environment as compared with Wt mice (p < 0.01). In a social approach test, however, dKO mice spent more time than Wt mice exploring the compartment containing a stranger mouse than the empty compartment (p < 0.05). Moreover, in a social interaction test, dKO mice exhibited increased contact time (p < 0.01). Compared with Wt mice, the dKO mice also had a longer single contact duration (p < 0.001) with the stranger mouse. In the elevated plus-maze, grooming, and marble burying tests, the anxiety level of dKO mice did not differ from that of Wt mice. Rearing time in an exploratory activity test, and spatial learning and memory in the Morris swim navigation task were also comparable between dKO and Wt mice. In the pentylenetetrazol (PTZ) seizure-susceptibility test, dKO mice had a shorter latency to the first epileptiform spike (p = 0.0001) and a greater total number of spikes (p < 0.001) than Wt mice. The dKO genotype did not affect the number of cortical perineuronal nets. Our findings indicate that Plau/Plaur-deficiency leads to a more social phenotype toward other mice with diminished interest in the surrounding environment, and increased seizure susceptibility.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Tamuna Bolkvadze
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Hennariikka Koivisto
- Neurobiology of Memory Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Laura Oliva Pérez
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Heikki Tanila
- Neurobiology of Memory Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
7
|
Missault S, Peeters L, Amhaoul H, Thomae D, Van Eetveldt A, Favier B, Thakur A, Van Soom J, Pitkänen A, Augustyns K, Joossens J, Staelens S, Dedeurwaerdere S. Decreased levels of active uPA and KLK8 assessed by [111In]MICA-401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy. Epilepsia 2017; 58:1615-1625. [DOI: 10.1111/epi.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Stephan Missault
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - Lore Peeters
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
- Bio-Imaging Lab; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Halima Amhaoul
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
- Laboratory of Medicinal Chemistry; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Annemie Van Eetveldt
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - Barbara Favier
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - Anagha Thakur
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - Jeroen Van Soom
- Laboratory of Medicinal Chemistry; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Asla Pitkänen
- Department of Neurobiology; A.I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Wilrijk Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| | - Stefanie Dedeurwaerdere
- Experimental Laboratory of Translational Neuroscience and Otolaryngology; Faculty of Medicine and Health Sciences; University of Antwerp; Wilrijk Belgium
| |
Collapse
|
8
|
Bolkvadze T, Puhakka N, Pitkänen A. Epileptogenesis after traumatic brain injury in Plaur-deficient mice. Epilepsy Behav 2016; 60:187-196. [PMID: 27208924 DOI: 10.1016/j.yebeh.2016.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
Binding of the extracellular matrix proteinase urokinase-type plasminogen activator (uPA) to its receptor, uPAR, regulates tissue remodeling during development and after injury in different organs, including the brain. Accordingly, mutations in the Plaur gene, which encodes uPAR, have been linked to language deficits, autism, and epilepsy, both in mouse and human. Whether uPAR deficiency modulates epileptogenesis and comorbidogenesis after brain injury, however, is unknown. To address this question, we induced traumatic brain injury (TBI) by controlled cortical impact (CCI) in 10 wild-type (Wt-CCI) and 16 Plaur-deficient (uPAR-CCI) mice. Sham-operated mice served as controls (10 Wt-sham, 10 uPAR-sham). During the 4-month follow-up, the mice were neurophenotyped by assessing the somatomotor performance with the composite neuroscore test, emotional learning and memory with fear conditioning to tone and context, and epileptogenesis with videoelectroencephalography monitoring and the pentylenetetrazol (PTZ) seizure susceptibility test. At the end of the testing, the mice were perfused for histology to analyze cortical and hippocampal neurodegeneration and mossy fiber sprouting. Fourteen percent (1/7) of the mice in the Wt-CCI and 0% in the uPAR-CCI groups developed spontaneous seizures (p>0.05; chi-square). Both the Wt-CCI and uPAR-CCI groups showed increased seizure susceptibility in the PTZ test (p<0.05), impaired recovery of motor function (p<0.001), and neurodegeneration in the hippocampus and cortex (p<0.05) compared with the corresponding sham-operated controls. Motor recovery and emotional learning showed a genotype effect, being more impaired in uPAR-CCI than in Wt-CCI mice (p<0.05). The findings of the present study indicate that uPAR deficiency does not increase susceptibility to epileptogenesis after CCI injury but has an unfavorable comorbidity-modifying effect after TBI.
Collapse
Affiliation(s)
- Tamuna Bolkvadze
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
9
|
Bolkvadze T, Rantala J, Puhakka N, Andrade P, Pitkänen A. Epileptogenesis after traumatic brain injury in Plau-deficient mice. Epilepsy Behav 2015; 51:19-27. [PMID: 26253597 DOI: 10.1016/j.yebeh.2015.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022]
Abstract
Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI.
Collapse
Affiliation(s)
- Tamuna Bolkvadze
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Rantala
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Pedro Andrade
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
10
|
Vaagenes IC, Tsai SY, Ton ST, Husak VA, McGuire SO, O’Brien TE, Kartje GL. Binge ethanol prior to traumatic brain injury worsens sensorimotor functional recovery in rats. PLoS One 2015; 10:e0120356. [PMID: 25768795 PMCID: PMC4359156 DOI: 10.1371/journal.pone.0120356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
A significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function. We trained adult, male, Sprague Dawley rats on the skilled forelimb reaching task and then administered a single binge dose of ethanol (2g/kg, i.p.) or saline for three consecutive days (for a total of 3 doses). One hour after the final ethanol dose, rats underwent a TBI to the sensorimotor cortex corresponding to the preferred reaching forelimb. Animals were then tested for seven weeks on the skilled forelimb reaching task to assess the profile of recovery. We found that the group given ethanol prior to TBI displayed a slower recovery curve with a lower recovery plateau as compared to the control group. Therefore, even a relatively short (3 day) episode of binge alcohol exposure can negatively impact long-term recovery from a TBI, underscoring this significant public health problem.
Collapse
Affiliation(s)
- Ian C. Vaagenes
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
- * E-mail:
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
| | - Son T. Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
- Neuroscience Research Institute, Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Vicki A. Husak
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
| | - Susan O. McGuire
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Timothy E. O’Brien
- Department of Mathematics and Statistics, Loyola University of Chicago, Chicago, Illinois, United States of America
| | - Gwendolyn L. Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States of America
- Department of Molecular Pharmacology and Therapeutics, Loyola University Medical Center, Maywood, Illinois, United States of America
- Neuroscience Research Institute, Loyola University Medical Center, Maywood, Illinois, United States of America
| |
Collapse
|
11
|
Rantala J, Kemppainen S, Ndode-Ekane XE, Lahtinen L, Bolkvadze T, Gurevicius K, Tanila H, Pitkänen A. Urokinase-type plasminogen activator deficiency has little effect on seizure susceptibility and acquired epilepsy phenotype but reduces spontaneous exploration in mice. Epilepsy Behav 2015; 42:117-28. [PMID: 25506794 DOI: 10.1016/j.yebeh.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 01/05/2023]
Abstract
Urokinase-type plasminogen activator (uPA), a serine protease, converts plasminogen to plasmin. Activation of plasmin leads to degradation of the extracellular matrix, which is critical for tissue recovery, angiogenesis, cell migration, and axonal and synaptic plasticity. We hypothesized that uPA deficiency would cause an abnormal neurophenotype and would lead to exacerbated epileptogenesis after brain injury. Wild-type (Wt) and uPA-/- mice underwent a battery of neurologic behavioral tests evaluating general reactivity, spontaneous exploratory activity, motor coordination, pain threshold, fear and anxiety, and memory. We placed particular emphasis on the effect of uPA deficiency on seizure susceptibility, including the response to convulsants (pentylenetetrazol, kainate, or pilocarpine) and kainate-induced epileptogenesis and epilepsy. The uPA-/- mice showed no motor or sensory impairment compared with the Wt mice. Hippocampus-dependent spatial memory also remained intact. The uPA-/- mice, however, exhibited reduced exploratory activity and an enhanced response to a tone stimulus (p<0.05 compared with the Wt mice). The urokinase-type plasminogen activator deficient mice showed no increase in spontaneous or evoked epileptiform electrographic activity. Rather, the response to pilocarpine administration was reduced compared with the Wt mice (p<0.05). Also, the epileptogenesis and the epilepsy phenotype after intrahippocampal kainate injection were similar to those in the Wt mice. Taken together, uPA deficiency led to diminished interest in the environmental surroundings and enhanced emotional reactivity to unexpected aversive stimuli. Urokinase-type plasminogen activator deficiency was not associated with enhanced seizure susceptibility or worsened poststatus epilepticus epilepsy phenotype.
Collapse
Affiliation(s)
- J Rantala
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - S Kemppainen
- Neurobiology of Memory Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - X E Ndode-Ekane
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - L Lahtinen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tamuna Bolkvadze
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - K Gurevicius
- Neurobiology of Memory Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - H Tanila
- Neurobiology of Memory Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland
| | - A Pitkänen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland.
| |
Collapse
|
12
|
Niskanen JP, Airaksinen AM, Sierra A, Huttunen JK, Nissinen J, Karjalainen PA, Pitkänen A, Gröhn OH. Monitoring functional impairment and recovery after traumatic brain injury in rats by FMRI. J Neurotrauma 2013; 30:546-56. [PMID: 23259713 PMCID: PMC3636591 DOI: 10.1089/neu.2012.2416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was designed to test a hypothesis that functional magnetic resonance imaging (fMRI) can be used to monitor functional impairment and recovery after moderate experimental traumatic brain injury (TBI). Moderate TBI was induced by lateral fluid percussion injury in adult rats. The severity of brain damage and functional recovery in the primary somatosensory cortex (S1) was monitored for up to 56 days using fMRI, cerebral blood flow (CBF) by arterial spin labeling, local field potential measurements (LFP), behavioral assessment, and histology. All the rats had reduced blood-oxygen-level-dependent (BOLD) responses during the 1st week after trauma in the ipsilateral S1. Forty percent of these animals showed recovery of the BOLD response during the 56 day follow-up. Unexpectedly, no association was found between the recovery in BOLD response and the volume of the cortical lesion or thalamic neurodegeneration. Instead, the functional recovery occurred in rats with preserved myelinated fibers in layer VI of S1. This is, to our knowledge, the first study demonstrating that fMRI can be used to monitor post-TBI functional impairment and consequent spontaneous recovery. Moreover, the BOLD response was associated with the density of myelinated fibers in the S1, rather than with neurodegeneration. The present findings encourage exploration of the usefulness of fMRI as a noninvasive prognostic biomarker for human post-TBI outcomes and therapy responses.
Collapse
Affiliation(s)
- Juha-Pekka Niskanen
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Alejandra Sierra
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Joanna K. Huttunen
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Jari Nissinen
- Department of Neurobiology, Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi A. Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Olli H. Gröhn
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Extracellular proteases in epilepsy. Epilepsy Res 2011; 96:191-206. [DOI: 10.1016/j.eplepsyres.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
14
|
Lahtinen L, Ndode-Ekane XE, Barinka F, Akamine Y, Esmaeili MH, Rantala J, Pitkänen A. Urokinase-type plasminogen activator regulates neurodegeneration and neurogenesis but not vascular changes in the mouse hippocampus after status epilepticus. Neurobiol Dis 2010; 37:692-703. [DOI: 10.1016/j.nbd.2009.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/01/2009] [Accepted: 12/08/2009] [Indexed: 12/22/2022] Open
|
15
|
Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus. Neuroscience 2009; 163:316-28. [DOI: 10.1016/j.neuroscience.2009.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/24/2009] [Accepted: 06/09/2009] [Indexed: 12/30/2022]
|
16
|
Alessandri B, Gugliotta M, Levasseur JE, Bullock MR. Lactate and glucose as energy substrates and their role in traumatic brain injury and therapy. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.2.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury is a leading cause of disability and mortality worldwide, but no new pharmacological treatments are clinically available. A key pathophysiological development in the understanding of traumatic brain injury is the energy crisis derived from decreased cerebral blood flow, increased energy demand and mitochondrial dysfunction. Although still controversial, new findings suggest that brain cells try to cope in these conditions by metabolizing lactate as an energy substrate ‘on-demand’ in lieu of glucose. Experimental and clinical data suggest that lactate, at least when exogenously administered, is transported from astrocytes to neurons for neuronal utilization, essentially bypassing the slow, catabolizing glycolysis process to quickly and efficiently produce ATP. Treatment strategies using systemically applied lactate have proved to be protective in various experimental traumatic brain injury studies. However, lactate has the potential to elevate oxygen consumption to high levels and, therefore, could potentially impose a danger for tissue-at-risk with low cerebral blood flow. The present review outlines the experimental basis of lactate in energy metabolism under physiological and pathophysiological conditions and presents arguments for lactate as a new therapeutical tool in human head injury.
Collapse
Affiliation(s)
- Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Marinella Gugliotta
- Department of Neurosurgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Joseph E Levasseur
- Department of Neurosurgery, VCU Medical Center, PO Box 980631, Richmond, VA 23298, USA
| | - M Ross Bullock
- Department of Neurosurgery, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Room 3–20, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
17
|
Fortuna GR, Mueller EW, James LE, Shutter LA, Butler KL. The impact of preinjury antiplatelet and anticoagulant pharmacotherapy on outcomes in elderly patients with hemorrhagic brain injury. Surgery 2008; 144:598-603; discussion 603-5. [PMID: 18847644 DOI: 10.1016/j.surg.2008.06.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND More elderly trauma patients are identified with preinjury use of clopidogrel, aspirin, or warfarin (CAW). The purpose of this study was to determine whether preinjury CAW use was an important predictor of mortality in patients aged >or=50 years with blunt, hemorrhagic brain injury (HBI). METHODS A retrospective review of patients with blunt, HBI aged >or=50 years with subgroup analysis for older (>70 years) and younger (50-70 years) patients was performed. CAW use was analyzed for differences in age, gender, hospital length of stay (LOS), Injury Severity Score (ISS), Glasgow Coma Score (GCS), mechanism of injury (MOI), platelet transfusion therapy (PLT), disposition at discharge, and in-hospital mortality. RESULTS From January 2003 to October 2005, 416 patients were identified. The mean age was 69+/-1 years. No differences were found for ISS (24 +/- 0.5), GCS (12 +/- 0.2), or LOS (8 +/- 0.4 days). CAW use was present in 40% of patients and significantly higher in older patients. Mortality was not different between older and younger CAW(+) patients, but it significantly increased for older CAW(-) patients. Significant predictors of death included age, ISS, and GCS (P<.02). CONCLUSIONS Preinjury CAW use in older blunt, HBI patients is not associated with increased mortality. Age was a significant predictor of mortality independent of CAW use.
Collapse
Affiliation(s)
- Gerald R Fortuna
- Department of Surgery, Division of Pharmacy Practice, The University Hospital, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|