1
|
Hassan A, Mohsen R, Rezk A, Bangay G, Rijo P, Soliman MFM, G. A. Hablas M, Swidan KAK, Mohammed TS, Zoair MA, Mohamed AAK, Abdalrhman TI, Abdel-aleem Desoky AM, Mohamed DD, Mohamed DD, Abd El Maksoud AI, Mohamed AF. Enhancement of Vitamin C's Protective Effect against Thimerosal-Induced Neurotoxicity in the Cerebral Cortex of Wistar Albino Rats: An In Vivo and Computational Study. ACS OMEGA 2024; 9:8973-8984. [PMID: 38434836 PMCID: PMC10905602 DOI: 10.1021/acsomega.3c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Vitamin C was examined to ameliorate the neurotoxicity of thimerosal (THIM) in an animal model (Wistar albino rats). In our work, oxidative and antioxidative biomarkers such as SOD, LPO, and GSH were investigated at various doses of THIM with or without concurrent vitamin C administration. Furthermore, the adverse effects of THIM on hepatic tissue and cerebral cortex morphology were examined in the absence or presence of associated vitamin C administration. Also, we studied the effect of vitamin C on the metallothionein isoforms (MT-1, MT-2, and MT-3) in silico and in vivo using the RT-PCR assay. The results showed that the antioxidant biomarker was reduced as the THIM dose was raised and vice versa. THIM-associated vitamin C reduced the adverse effects of the THIM dose. The computation studies demonstrated that vitamin C has a lower ΔG of -4.9 kcal/mol compared to -4.1 kcal/mol for THIM to bind to the MT-2 protein, which demonstrated that vitamin C has a greater ability to bind with MT-2 than THIM. This is due to multiple hydrogen bonds that exist between vitamin C and MT-2 residues Lys31, Gln23, Cys24, and Cys29, and the sodium ion represents key stabilizing interactions. Hydrogen bonds involve electrostatic interactions between hydrogen atom donors (e.g., hydroxyl groups) and acceptors (e.g., carbonyl oxygens). The distances between heavy atoms are typically 2.5-3.5 Å. H-bonds provide directed, high-affinity interactions to anchor the ligand to the binding site. The five H-bonds formed by vitamin C allow it to form a stable complex with MT, while THIM can form two H-bonds with Gln23 and Cys24. This provides less stabilization in the binding pocket, contributing to the lower affinity compared to vitamin C. The histopathological morphologies in hepatic tissue displayed an expansion in the portal tract and the hepatocytes surrounding the portal tract, including apoptosis, binucleation, and karyomegaly. The histopathological morphologies in the brain tissue revealed a significant decrease in the number of Purkinje cells due to THIM toxicity. Interestingly, THIM toxicity was associated with hemorrhage and astrogliosis. Both intracellular and vasogenic edema appeared as the concentrations of THIM rose. Finally, vitamin C ameliorated the adverse effect on the cerebral cortex in Wistar albino rats.
Collapse
Affiliation(s)
- Amr Hassan
- Department
of Bioinformatics, Genetic Engineering and Biotechnology Research
Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Reham Mohsen
- College
of Biotechnology, October University for Modern Science and Arts (MSA), University Giza, Giza 11456, Egypt
| | - Ahmed Rezk
- College
of Biotechnology, October University for Modern Science and Arts (MSA), University Giza, Giza 11456, Egypt
| | - Gabrielle Bangay
- CBIOS—Research
Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa 1749-024, Portugal
- Facultad
de Farmacia, Departamento de Ciencias Biomédicas (Área
de Farmacología; Nuevos agentes antitumorales, Acción
tóxica sobre células leucémicas), Universidad de Alcalá de Henares, Ctra. Madrid-Barcelona km. 33, Alcalá de Henares 600 28805, Madrid, Espana
| | - Patrícia Rijo
- CBIOS—Research
Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa 1749-024, Portugal
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Lisbon 1749-024, Portugal
| | - Mona F. M. Soliman
- Department
of Histology and Cell Biology, Faculty Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed G. A. Hablas
- Department
of Histology and Cell Biology, Faculty of Medicine, Suez University, Suez 43221, Egypt
| | | | - Tahseen S. Mohammed
- Department
of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammad A. Zoair
- Department
of Physiology, Faculty of Medicine, Al-Azhar
University, Cairo 11884, Egypt
| | - Abir A. Khalil Mohamed
- Department
of Zoology, Faculty of Science, Girls Branch, Al-Azhar University, Cairo 11884, Egypt
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | | | - Dalia D. Mohamed
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Doaa D. Mohamed
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Ahmed I. Abd El Maksoud
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Aly F. Mohamed
- Holding
Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt
| |
Collapse
|
2
|
Shevelev OB, Cherkasova OP, Razumov IA, Zavjalov EL. In vivo MRS study of long-term effects of traumatic intracranial injection of a culture medium in mice. Vavilovskii Zhurnal Genet Selektsii 2023; 27:633-640. [PMID: 38223456 PMCID: PMC10784322 DOI: 10.18699/vjgb-23-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/21/2023] [Accepted: 06/01/2023] [Indexed: 01/16/2024] Open
Abstract
Orthotopic transplantation of glioblastoma cells in the brain of laboratory mice is a common animal model for studying brain tumors. It was shown that 1H magnetic resonance spectroscopy (MRS) enables monitoring of the tumor's occurrence and its development during therapy based on the ratio of several metabolites. However, in studying new approaches to the therapy of glioblastoma in the model of orthotopic xenotransplantation of glioma cells into the brain of mice, it is necessary to understand which metabolites are produced by a growing tumor and which are the result of tumor cells injection along the modeling of the pathology. Currently, there are no data on the dynamic metabolic processes in the brain that occur after the introduction of glioblastoma cells into the brain of mice. In addition, there is a lack of data on the delayed effects of invasive brain damage. Therefore, this study investigates the long-term dynamics of the neurometabolic profile, assessed using 1H MRS, after intracranial injection of a culture medium used in orthotopic modeling of glioma in mice. Levels of N-acetylaspartate, N-acetylaspartylglutamic acid, myoinositol, taurine, glutathione, the sum of glycerophosphocholine and phosphocholine, glutamic acid (Glu), glutamine (Gln), and gamma aminobutyric acid (GABA) indicate patterns of neurometabolites in the early stage after intracranial injection similar to brain trauma ones. Most of the metabolites, with the exception of Gln, Glu and GABA, returned to their original values on day 28 after injection. A progressive increase in the Glu/Gln and Glu/GABA ratio up to 28 days after surgery potentially indicates an impaired turnover of these metabolites or increased neurotransmission. Thus, the data indicate that the recovery processes are largely completed on day 28 after the traumatic event in the brain tissue, leaving open the question of the neurotransmitter system impairment. Consequently, when using animal models of human glioma, researchers should clearly distinguish between which changes in neurometabolites are a response to the injection of cancer cells into the brain, and which processes may indicate the early development of a brain tumor. It is important to keep this in mind when modeling human glioblastoma in mice and monitoring new treatments. In addition, these results may be important in the development of approaches for non-invasive diagnostics of traumatic brain injury as well as recovery and rehabilitation processes of patients after certain brain surgeries.
Collapse
Affiliation(s)
- O B Shevelev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute "International Tomografic Center" of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O P Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Technical University, Novosibirsk, Russia
| | - I A Razumov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Delayed TBI-Induced Neuronal Death in the Ipsilateral Hippocampus and Behavioral Deficits in Rats: Influence of Corticosterone-Dependent Survivorship Bias? Int J Mol Sci 2023; 24:ijms24054542. [PMID: 36901972 PMCID: PMC10003069 DOI: 10.3390/ijms24054542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute and chronic corticosterone (CS) elevations after traumatic brain injury (TBI) may be involved in distant hippocampal damage and the development of late posttraumatic behavioral pathology. CS-dependent behavioral and morphological changes were studied 3 months after TBI induced by lateral fluid percussion in 51 male Sprague-Dawley rats. CS was measured in the background 3 and 7 days and 1, 2 and 3 months after TBI. Tests including open field, elevated plus maze, object location, new object recognition tests (NORT) and Barnes maze with reversal learning were used to assess behavioral changes in acute and late TBI periods. The elevation of CS on day 3 after TBI was accompanied by early CS-dependent objective memory impairments detected in NORT. Blood CS levels > 860 nmol/L predicted delayed mortality with an accuracy of 0.947. Ipsilateral neuronal loss in the hippocampal dentate gyrus, microgliosis in the contralateral dentate gyrus and bilateral thinning of hippocampal cell layers as well as delayed spatial memory deficits in the Barnes maze were revealed 3 months after TBI. Because only animals with moderate but not severe posttraumatic CS elevation survived, we suggest that moderate late posttraumatic morphological and behavioral deficits may be at least partially masked by CS-dependent survivorship bias.
Collapse
|
4
|
Younger DS. Mild traumatic brain injury and sports-related concussion. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:475-494. [PMID: 37620086 DOI: 10.1016/b978-0-323-98817-9.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Mild traumatic brain injury (mTBI) and concussion are equivalent terms for the sequela of injury to the head that disrupts brain functioning. Various forces may be causative from seemingly innocuous bumps to the head resulting from sports-related injuries to more severe blows to the head. However, the postconcussive motor, cognitive, emotional, and psychosocial sequelae can be just as devastating and long lasting, leading to loss of independent function and safe performance of activities. Taken together, they pose a significant challenge to recovery, requiring a multifaceted dynamic rehabilitative strategy. The current systems of health care pose challenges to suboptimal management of sports-related concussion (SRC) that goes beyond the acute injury, and into the school setting, failing to be identified by school staff, and inconsistencies in communicating medical information regarding school modifications, follow-up health services, or concussion-related educational services. Children who sustain SRC at different ages face different challenges. Young children face increased vulnerability due to SRC that coincides with periods of brain motor maturation and development.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
5
|
Komoltsev IG, Gulyaeva NV. Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022; 10:biomedicines10051139. [PMID: 35625876 PMCID: PMC9138485 DOI: 10.3390/biomedicines10051139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal damage are discussed with a focus on the consequences of traumatic brain injury. The effects of glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration, duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in the hippocampus after brain trauma are involved in late post-traumatic pathology development, such as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic–pituitary–adrenal axis on neuroinflammation may be essential for late post-traumatic pathology. These mechanisms are applicable to remote hippocampal damage occurring after other types of focal brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury. Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic–pituitary–adrenal axis with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive functions and the emotional state, further research on potential links between glucocorticoid signaling and inflammatory processes in the brain and respective mechanisms is vital.
Collapse
Affiliation(s)
- Ilia G. Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
| | - Natalia V. Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117465 Moscow, Russia;
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-495-9524007 or +7-495-3347020
| |
Collapse
|
6
|
Jiang J, Liu X, Chen H, Dai C, Niu X, Dai L, Chen X, Zhang S. 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomater Sci 2020; 8:6362-6374. [PMID: 33026366 DOI: 10.1039/d0bm01116a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue engineering is considered highly promising for the repair of traumatic brain injury (TBI), and accumulating evidence has proved the efficacy of biomaterials and 3D printing. Although collagen is famous for its natural properties, some defects still restrict its potential applications in tissue repair. In this experimental study, we fabricated a kind of scaffold with collagen and heparin sulfate via 3D printing, which possesses favorable physical properties and suitable degradation rate along with satisfactory cytocompatibility. After implantation, the results of motor evoked potentials (MEPs) showed that the latency and amplitude can both be improved in hemiplegic limbs, and the structural integrity of the cerebral cortex and corticospinal tract can be enhanced significantly under magnetic resonance imaging (MRI) evaluation. Additionally, the results of in situ hybridization (ISH) and immunofluorescence staining also revealed the facilitating role of 3D printing collagen/heparin sulfate scaffolds on vascular and neural regeneration. Moreover, the individuals implanted with this kind of scaffold present better gait characteristics and preferable electromyography and myodynamia. In general, 3D printed collagen/heparin sulfate scaffolds have superb performance in both structural repair and functional improvement and may offer a new strategy for the repair of TBI.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Xia X, Zhou C, Sun X, He X, Liu C, Wang G. Estrogen improved the regeneration of axons after subcortical axon injury via regulation of PI3K/Akt/CDK5/Tau pathway. Brain Behav 2020; 10:e01777. [PMID: 32755041 PMCID: PMC7507494 DOI: 10.1002/brb3.1777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the effect of estrogen on axon regeneration and neurological recovery after subcortical axon injury, and further explore its underlying molecular mechanisms. METHOD Subcortical axonal fiber injury model was used in this study. Morris water maze was conducted to detect the learning and memory ability of the rats; modified neurological severity score (mNSS) and beam walking test were performed to evaluate the behavioral; and diffusion tensor imaging (DTI) was used for the determination of recovery after subcortical axonal injury, while Western blotting was performed to detect the expression of p-Akt, CDK5, p-Ser262, p-Ser404, and p-Thr205. RESULTS Compared with the Sham group, the injury of subcortical axonal fiber resulted in higher mNSS, higher beam walking scores, longer time of escape latency, less number, time and shorter distance of crossing the quadrant, and less FA values. After ovariectomy, the mNSS, beam walking scores, and escape latency reached the peak; inversely, the others reached a minimum. High estrogen treatment reduced the mNSS, beam walking score, and escape latency; improved the number, time, and distance of crossing the quadrant; and increased the FA value. Western blotting results showed that estrogen increased the expression of p-Akt and decreased the expression of CDK5, p-Ser262, p-Ser404, and p-Thr205. All the changes were counteracted to some extent by Akt inhibitor LY294002. CONCLUSION After subcortical axonal injury, estrogen could improve the regeneration of axons and improve their functions via regulating the PI3K/Akt/CDK5/Tau pathway.
Collapse
Affiliation(s)
- Xiaohui Xia
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Changlong Zhou
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Xiaochuan Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuenong He
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Chang Liu
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| | - Guanyu Wang
- Department of NeurosurgeryYongchuan HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
8
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Volkova AA, Levshina IP, Novikova MR, Manolova AO, Gulyaeva NV. Differential early effects of traumatic brain injury on spike-wave discharges in Sprague-Dawley rats. Neurosci Res 2020; 166:42-54. [PMID: 32461140 DOI: 10.1016/j.neures.2020.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.
Collapse
Affiliation(s)
- Ilia G Komoltsev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| | - Stepan O Frankevich
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia I Shirobokova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Aleksandra A Volkova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Irina P Levshina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Margarita R Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Anna O Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| |
Collapse
|
9
|
Guan Y, Li L, Chen J, Lu H. Effect of AQP4-RNAi in treating traumatic brain edema: Multi-modal MRI and histopathological changes of early stage edema in a rat model. Exp Ther Med 2020; 19:2029-2036. [PMID: 32104262 PMCID: PMC7027281 DOI: 10.3892/etm.2020.8456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and permanent disabilities worldwide. Brain edema following TBI remains to be the predominant cause of mortality and disability in patients worldwide. Previous studies have reported that brain edema is closely associated with aquaporin-4 (AQP4) expression. AQP4 is a water channel protein and mediates water homeostasis in a variety of brain disorders. In the current study, a rat TBI model was established, and the features of brain edema following TBI were assessed using multimodal MRI. The results of the multimodal MRI were useful, reliable and were used to evaluate the extent and the type of brain edema following TBI. Brain edema was also successfully alleviated using an intracerebral injection of AQP4 small interfering (si)RNA. The expression of AQP4 and its role in brain edema were also examined in the present study. The AQP4 siRNA was demonstrated to downregulate AQP4 expression following TBI and reduced brain edema at the early stages of TBI (6 and 12 h). The current study revealed the MRI features of brain edema and the changes in AQP4 expression exhibited following TBI, and the results provide important information that can be used to improve the early diagnosis and treatment of brain edema.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasonography, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Jianqiang Chen
- Department of Radiology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, Chongqing 400054, P.R. China
| |
Collapse
|
10
|
Abstract
We explored the dynamic features of brain edema after traumatic brain injury (TBI) using healthy adult male Wistar rats. After inducing moderate brain injuries in the rats, we divided them randomly among seven groups on the basis of the time elapsed between TBI and examination: 1, 6, 12, 24, 48, 72, and 168 h. All rats were scanned using diffusion-weighted imaging (DWI) to observe tissue changes in the contusion penumbra (CP) after TBI. Immunoglobulin G expression was also detected. At 1 h after TBI, there was an annular light-colored region in the CP where the intercellular space was enlarged, suggesting vasogenic edema. At 6 h, the cells expanded, their nuclei shrank, and the cytoplasm was replaced by vacuoles, indicating intracellular edema. Vasogenic edema and intracellular edema increased 12 h after TBI, but decreased 24 h after TBI, with vasogenic edema increasing 48 h after TBI. By 72 h after TBI, intracellular edema dominated until resolution of all edema by 168 h after TBI. DWI indicated that the relative apparent diffusion coefficient increased markedly at 1 h after TBI, but was reduced at 6 and 12 h after TBI. At 48 h, relative apparent diffusion coefficient increased gradually and then declined at 72 h. In rats, TBI-related changes include dynamic variations in intracellular and vasogenic edema severity. Routine MRI and DWI examinations do not distinguish between the center of trauma and CP; however, the apparent diffusion coefficient diagram can portray variations in CP edema type and degree at different time-points following TBI.
Collapse
Affiliation(s)
- Huanhuan Ren
- Department of Radiology, Chongqing Seventh People's Hospital, Chongqing, China
| | | |
Collapse
|
11
|
Yasmin A, Pitkänen A, Jokivarsi K, Poutiainen P, Gröhn O, Immonen R. MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex - A 6-Months Multimodal Imaging Follow-Up Study. Front Neurosci 2019; 13:863. [PMID: 31474824 PMCID: PMC6707062 DOI: 10.3389/fnins.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Kinder HA, Baker EW, Wang S, Fleischer CC, Howerth EW, Duberstein KJ, Mao H, Platt SR, West FD. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019; 36:2930-2942. [PMID: 31084386 DOI: 10.1089/neu.2018.6303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children. Pediatric TBI patients often suffer from crippling cognitive, emotional, and motor function deficits that have negative lifelong effects. The objective of this study was to longitudinally assess TBI pathophysiology using multi-parametric magnetic resonance imaging (MRI), gait analysis, and histological approaches in a pediatric piglet model. TBI was produced by controlled cortical impact in Landrace piglets. MRI data, including from proton magnetic resonance spectroscopy (MRS), were collected 24 hours and 12 weeks post-TBI, and gait analysis was performed at multiple time-points over 12 weeks post-TBI. A subset of animals was sacrificed 24 hours, 1 week, 4 weeks, and 12 weeks post-TBI for histological analysis. MRI results demonstrated that TBI led to a significant brain lesion and midline shift as well as microscopic tissue damage with altered brain diffusivity, decreased white matter integrity, and reduced cerebral blood flow. MRS showed a range of neurochemical changes after TBI. Histological analysis revealed neuronal loss, astrogliosis/astrocytosis, and microglia activation. Further, gait analysis showed transient impairments in cadence, cycle time, % stance, step length, and stride length, as well as long-term impairments in weight distribution after TBI. Taken together, this study illustrates the distinct time course of TBI pathoanatomic and functional responses up to 12 weeks post-TBI in a piglet TBI model. The study of TBI injury and recovery mechanisms, as well as the testing of therapeutics in this translational model, are likely to be more predictive of human responses and clinical outcomes compared to traditional small animal models.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Silun Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
13
|
Metabolite differences between glutamate carboxypeptidase II gene knockout mice and their wild-type littermates after traumatic brain injury: a 7-tesla 1H-MRS study. BMC Neurosci 2018; 19:75. [PMID: 30458729 PMCID: PMC6245916 DOI: 10.1186/s12868-018-0473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a complex condition and remains a prominent public and medical health issue in individuals of all ages. A rapid increase in extracellular glutamate occurs after TBI, leading to glutamate-induced excitotoxicity, which causes neuronal damage and further functional impairments. Although inhibition of glutamate carboxypeptidase II (GCP II) is considered a potential approach for reducing glutamate-induced excitotoxicity after TBI, further detailed evidence regarding its efficacy is required. Therefore, in this study, we examined the differences in the metabolite status between wild-type (WT) and GCP II gene-knockout (KO) mice after TBI using proton magnetic resonance spectroscopy (1H-MRS) and T2-weighted magnetic resonance (MR) imaging with a 7-tesla imaging system, and brain water-content analysis. Results Evaluation of glutamate and N-acetylaspartate concentrations revealed a decrease in both levels in the ipsilateral hippocampus at 24 h post-TBI; however, the reduction in glutamate and N-acetylaspartate levels was less marked in GCP II-KO mice than in WT mice (p < 0.05). T2 MR data and brain water-content analysis demonstrated that the extent of cortical edema and brain swelling was less in KO than in WT mice after TBI (p < 0.05). Conclusion Using two non-invasive methods, 1H-MRS and T2 MR imaging, as well as in vitro brain-water content measurements, we demonstrated that the mechanism underlying the neuroprotective effects of GCP II-KO against brain swelling in TBI involves changes in glutamate and N-acetylaspartate levels. This knowledge may contribute towards the development of therapeutic strategies for TBI.
Collapse
|
14
|
Abstract
PRIMARY OBJECTIVE The purpose of this paper is to review the clinical and research utility and applications of blood, cerebrospinal fluid (CSF), and cerebral microdialysis biomarkers in traumatic brain injury (TBI). RESEARCH DESIGN Not applicable. METHODS AND PROCEDURES A selective review was performed on these biofluid biomarkers in TBI. MAIN OUTCOME AND RESULTS Neurofilament heavy chain protein (NF-H), glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCHL1), neuron-specific enolase (NSE), myelin basic protein (MBP), tau, and s100β blood biomarkers are elevated during the acute phase of severe head trauma but have key limitations in their research and clinical applications to mild TBI (mTBI). CSF biomarkers currently provide the best reflection of the central nervous system (CNS) pathobiological processes in TBI. Both animal and human studies of TBI have demonstrated the importance of serial sampling of biofluids and suggest that CSF biomarkers may be better equipped to characterize both TBI severity and temporal profiles. CONCLUSIONS The identification of biofluid biomarkers could play a vital role in identifying, diagnosing, and treating the underlying individual pathobiological changes of TBI. CNS-derived exosomes analyzed by ultra-high sensitivity detection methods have the potential to identify blood biomarkers for the range of TBI severity and time course.
Collapse
Affiliation(s)
- Denes V Agoston
- a Department of Anatomy, Physiology and Genetics , Uniformed Services University , Bethesda , MD , USA.,b Department of Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Andrew Shutes-David
- c VA Northwest Network Mental Illness Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,d Geriatric Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA
| | - Elaine R Peskind
- c VA Northwest Network Mental Illness Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,e Department of Psychiatry and Behavioral Sciences , University of Washington , Seattle , WA , USA
| |
Collapse
|
15
|
Li J, Zhao C, Rao JS, Yang FX, Wang ZJ, Lei JF, Yang ZY, Li XG. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 2017; 59:1203-1212. [PMID: 28856389 DOI: 10.1007/s00234-017-1915-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. METHODS Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. RESULTS Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1H MRS parameters were observed between day 1 and day 3. CONCLUSION Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei-Xiang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhan-Jing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Jian-Feng Lei
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China. .,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Pérez-Hernández M, Fernández-Valle ME, Rubio-Araiz A, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus. Neuropharmacology 2017; 118:157-166. [PMID: 28322979 DOI: 10.1016/j.neuropharm.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
Abstract
The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana Rubio-Araiz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
17
|
Brabazon F, Wilson CM, Shukla DK, Mathur S, Jaiswal S, Bermudez S, Byrnes KR, Selwyn R. [18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats. J Neurotrauma 2017; 34:1074-1085. [DOI: 10.1089/neu.2016.4540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Colin M. Wilson
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dinesh K Shukla
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanjeev Mathur
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sara Bermudez
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kimberly R. Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Reed Selwyn
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
18
|
Chen JQ, Zhang CC, Jiang SN, Lu H, Wang W. Effects of Aquaporin 4 Knockdown on Brain Edema of the Uninjured Side After Traumatic Brain Injury in Rats. Med Sci Monit 2016; 22:4809-4819. [PMID: 27930615 PMCID: PMC5161431 DOI: 10.12659/msm.898190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Traumatic brain injury (TBI) induces edema on the uninjured side (i.e., contralateral brain tissue; CBT). We evaluated the role of AQP4 in CBT edema formation following TBI. Material/Methods Mild or severe TBI was induced using a controlled cortical impact model in rats, immediately followed by intraventricular siRNA infusions. The effects of AQP4 siRNA on CBT edema were assessed at up to 168 h. Results Mild or severe TBI induced different patterns of CBT edema. Furthermore, following mild TBI, brain water content (BWC) was increased at 72 h thereafter and AQP4 expression was increased after 168 h, relative to non-injured rats (i.e., sham). AQP4 interference reduced AQP4 expression 48 h thereafter and BWC 72 h thereafter, relative to control siRNA. In contrast, following severe TBI, BWC was increased 1 h thereafter and AQP4 expression was transiently enhanced after 1 h, relative to sham. However, AQP4 interference reduced AQP4 expression after 1 h and BWC 24 h thereafter, relative to control siRNA. Finally, apparent diffusion coefficient (ADC) value in CBT was positively correlated with AQP4 expression level following severe, but not mild, TBI. AQP4 interference disrupted this correlation. Conclusions AQP4 interference reduces CBT edema formation, and ADC value may predict TBI severity.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Cheng-Cheng Zhang
- Department of Radiology, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South Universit, Haikou, Hainan, China (mainland)
| | - Sheng-Nan Jiang
- Department of Nuclear Medicine, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South University, Haikou, Hainan, China (mainland)
| | - Hong Lu
- Department of Radiology, Chongqing The Seventh People's Hospital, Chongqing, China (mainland)
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
19
|
Gatto R, Chauhan M, Chauhan N. Anti-edema effects of rhEpo in experimental traumatic brain injury. Restor Neurol Neurosci 2016; 33:927-41. [PMID: 26484701 DOI: 10.3233/rnn-150577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the leading causes of disability and death which begins with the formation of edema as the persistent primary causative factor in TBI. Although medical management of cerebral edema by hypothermia, ventriculostomy, mannitol or hypertonic saline have been effective in treating edema, many of these therapies end up with some neurologic deficits, necessitating novel treatment options for treating post-TBI edema. This study investigated edema reducing effects of recombinant human Erythropoietin (rhEPO) in reducing acute brain edema in the CCI mouse model of TBI. METHODS Anti-edema effects of rhEpo in reducing acute brain edema after injury in the CCI mouse model of TBI were assessed by T2 weighted magnetic resonance imaging (T2wMRI) as the accurate detector of brain edema in correlation with Western blot analysis of cerebral aquaporin 4 (AQP4) index as the critical marker of edema. RESULTS Results show that rhEpo treatment significantly reduced brain edema with concomitant reduction in AQP4 immunoexpression in the CCI mouse model of TBI. CONCLUSION Current results emphasize clinical utility of rhEpo in treating post-TBI edema.
Collapse
Affiliation(s)
- Rodolfo Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima Chauhan
- Neuroscience Research, R&D, Jesse Brown VA Medical Center, Chicago, IL, USA.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Mishra SK, Rana P, Khushu S, Gangenahalli G. Therapeutic Prospective of Infused Allogenic Cultured Mesenchymal Stem Cells in Traumatic Brain Injury Mice: A Longitudinal Proton Magnetic Resonance Spectroscopy Assessment. Stem Cells Transl Med 2016; 6:316-329. [PMID: 28170180 PMCID: PMC5442758 DOI: 10.5966/sctm.2016-0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
Improved therapeutic assessment of experimental traumatic brain injury (TBI), using mesenchymal stem cells (MSCs), would immensely benefit its therapeutic management. Neurometabolite patterns at injury site, measured with proton magnetic resonance spectroscopy (1H‐MRS) after MSCs transplantation, may serve as a bio‐indicator of the recovery mechanism. This study used in vivo magnetic resonance imaging and 1H‐MRS to evaluate the therapeutic prospects of implanted MSCs at injury site in experimental mice longitudinally up to 21 days. Negative tissue contrast and cytotoxic edema formation were observed in susceptibility‐based contrast (T2*) and an apparent diffusion coefficient map, respectively. Lesion site showed decreased N‐acetylaspartate, total choline, myo‐inositol, total creatine, glutamate‐glutamine complex, and taurine neurometabolic concentrations by 1H‐MRS investigation. There was a considerable decrease in locomotor activity, depression index, and cognitive index after TBI. It may, therefore, be inferred that MSC transplantation prompted recovery by decreasing negative signals and edema, restoring metabolites to baseline concentrations, and enhancing behavioral activity. Overall findings support the potential of MSC transplantation for the enhancement of endogenous neuroprotective responses, which may provide future clinical applications for translating laboratory research into therapeutic clinical advances. Stem Cells Translational Medicine2017;6:316–329
Collapse
Affiliation(s)
- Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Timarpur, Delhi, India
| |
Collapse
|
21
|
Tian R, Hou Z, Hao S, Wu W, Mao X, Tao X, Lu T, Liu B. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Brain Res 2016; 1637:1-13. [PMID: 26826009 DOI: 10.1016/j.brainres.2016.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.
Collapse
Affiliation(s)
- Runfa Tian
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Weichuan Wu
- Department of Neurosurgery, Baoan Central Hospital, Shenzhen 518102, PR China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Xiaogang Tao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Te Lu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, PR China; Beijing Key Laboratory of Central Nervous System Injury, Beijing 100050, PR China; Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, PR China; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing 100050, PR China; Department of Neurotrauma, General Hospital of Armed Police Forces, Beijing 100039, PR China.
| |
Collapse
|
22
|
Long JA, Watts LT, Li W, Shen Q, Muir ER, Huang S, Boggs RC, Suri A, Duong TQ. The effects of perturbed cerebral blood flow and cerebrovascular reactivity on structural MRI and behavioral readouts in mild traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:1852-61. [PMID: 26104285 PMCID: PMC4635242 DOI: 10.1038/jcbfm.2015.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/11/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of perturbed cerebral blood flow (CBF) and cerebrovascular reactivity (CR) on relaxation time constant (T2), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and behavioral scores at 1 and 3 hours, 2, 7, and 14 days after traumatic brain injury (TBI) in rats. Open-skull TBI was induced over the left primary forelimb somatosensory cortex (N=8 and 3 sham). We found the abnormal areas of CBF and CR on days 0 and 2 were larger than those of the T2, ADC, and FA abnormalities. In the impact core, CBF was reduced on day 0, increased to 2.5 times of normal on day 2, and returned toward normal by day 14, whereas in the tissue surrounding the impact, hypoperfusion was observed on days 0 and 2. CR in the impact core was negative, most severe on day 2 but gradually returned toward normal. T2, ADC, and FA abnormalities in the impact core were detected on day 0, peaked on day 2, and pseudonormalized by day 14. Lesion volumes peaked on day 2 and were temporally correlated with forelimb asymmetry and foot-fault scores. This study quantified the effects of perturbed CBF and CR on structural magnetic resonance imaging and behavioral readouts.
Collapse
Affiliation(s)
- Justin A Long
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Lora T Watts
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Departments of Cellular and Structure Biology, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Neurology, University of Texas Health Science Center, Houston, Texas, USA
| | - Wei Li
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Eric R Muir
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Shiliang Huang
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Robert C Boggs
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Abhinav Suri
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy Q Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Neurology, University of Texas Health Science Center, Houston, Texas, USA.,Department of Opthalmology, University of Texas Health Science Center, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
23
|
Harris JL, Choi IY, Brooks WM. Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain. Front Aging Neurosci 2015; 7:202. [PMID: 26578948 PMCID: PMC4623195 DOI: 10.3389/fnagi.2015.00202] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Following a brain injury, the mobilization of reactive astrocytes is part of a complex neuroinflammatory response that may have both harmful and beneficial effects. There is also evidence that astrocytes progressively accumulate in the normal aging brain, increasing in both number and size. These astrocyte changes in normal brain aging may, in the event of an injury, contribute to the exacerbated injury response and poorer outcomes observed in older traumatic brain injury (TBI) survivors. Here we present our view that proton magnetic resonance spectroscopy (1H-MRS), a neuroimaging approach that probes brain metabolism within a defined region of interest, is a promising technique that may provide insight into astrocyte metabolic changes in the injured and aging brain in vivo. Although 1H-MRS does not specifically differentiate between cell types, it quantifies certain metabolites that are highly enriched in astrocytes (e.g., Myo-inositol, mlns), or that are involved in metabolic shuttling between astrocytes and neurons (e.g., glutamate and glutamine). Here we focus on metabolites detectable by 1H-MRS that may serve as markers of astrocyte metabolic status. We review the physiological roles of these metabolites, discuss recent 1H-MRS findings in the injured and aging brain, and describe how an astrocyte metabolite profile approach might be useful in clinical medicine and clinical trials.
Collapse
Affiliation(s)
- Janna L Harris
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Neurology, University of Kansas Medical Center Kansas City, KS, USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center Kansas City, KS, USA
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center Kansas City, KS, USA ; Department of Neurology, University of Kansas Medical Center Kansas City, KS, USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
24
|
Neuroprotective efficacy of decompressive craniectomy after controlled cortical impact injury in rats: An MRI study. Brain Res 2015; 1622:339-49. [DOI: 10.1016/j.brainres.2015.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/27/2015] [Accepted: 06/24/2015] [Indexed: 11/23/2022]
|
25
|
Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep 2015; 12:7351-7. [PMID: 26459070 PMCID: PMC4626127 DOI: 10.3892/mmr.2015.4372] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury‑induced pathological changes in the contralateral non‑damaged side of the brain remain to be fully elucidated. In the present study, male Sprague‑Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non‑damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non‑damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Radiology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Jianqiang Chen
- Department of Radiology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Hong Lu
- Department of Radiology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| |
Collapse
|
26
|
Liu S, Liu Y, Deng S, Guo A, Wang X, Shen G. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury. Exp Brain Res 2015; 233:3359-65. [PMID: 26267487 DOI: 10.1007/s00221-015-4405-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygen (HBO) therapy helps alleviate secondary injury following brain trauma [traumatic brain injury (TBI)], although the mechanisms remain unclear. In this study, we assessed recovery of post-TBI spatial learning and memory in rats using the Morris water maze (MWM) and measured changes in apparent diffusion coefficient in the hippocampus by diffusion-weighted imaging (DWI) to evaluate possible therapeutic effects of HBO on TBI-associated brain edema. DWIs were obtained 8, 24, 48 h, 7 days, and 14 days post-TBI. Daily HBO therapy significantly improved post-TBI MWM performance and reduced edema in the ipsilateral hippocampus, suggesting that the therapeutic efficacy of HBO is mediated, at least in part, by a reduction in brain edema.
Collapse
Affiliation(s)
- Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Shukun Deng
- Department of Rehabilitation Medicine, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, China
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xiubing Wang
- Department of Imaging, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Guangyu Shen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
27
|
Long JA, Watts LT, Chemello J, Huang S, Shen Q, Duong TQ. Multiparametric and longitudinal MRI characterization of mild traumatic brain injury in rats. J Neurotrauma 2015; 32:598-607. [PMID: 25203249 DOI: 10.1089/neu.2014.3563] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study reports T2 and diffusion-tensor magnetic resonance imaging (MRI) studies of a mild open-skull, controlled cortical impact injury in rats (n=6) from 3 h to up to 14 d after traumatic brain injury (TBI). Comparison was made with longitudinal behavioral measurements and end-point histology. The impact was applied over the left primary forelimb somatosensory cortex (S1FL). The major findings were: 1) In the S1FL, T2 increased and fractional anisotropy (FA) decreased at 3 h after TBI and gradually returned toward normal by Day 14; 2) in the S1FL, the apparent diffusion coefficient (ADC) increased at 3 h, peaked on Day 2, and gradually returned toward normal at Day 14; 3) in the corpus callosum underneath the S1FL, FA decreased at 3 h to Day 2 but returned to normal at Day 7 and 14, whereas T2 and ADC were normal throughout; 4) heterogeneous hyperintense and hypointense T2 map intensities likely indicated the presence of hemorrhage but were not independently verified; 5) lesion volumes defined by abnormal T2, ADC, and FA showed similar temporal patterns, peaking around Day 2 and returning toward normal on Day 14; 6) the temporal profiles of lesion volumes were consistent with behavioral scores assessed by forelimb placement and forelimb foot fault tests; and 7) at 14 d post-TBI, there was substantial tissue recovery by MRI, which could either reflect true tissue recovery or reabsorption of edema. Histology performed 14 d post-TBI, however, showed a small cavitation and significant neuronal degeneration surrounding the cavitation in S1FL. Thus, the observed improvement of behavioral scores likely involves both functional recovery and functional compensation.
Collapse
Affiliation(s)
- Justin Alexander Long
- 1 Research Imaging Institute, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | | | | | | | |
Collapse
|
28
|
Maegele M, Stuermer EK, Hoeffgen A, Uhlenkueken U, Mautes A, Schaefer N, Lippert-Gruener M, Schaefer U, Hoehn M. Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites. Acta Radiol Short Rep 2015; 4:2047981614555142. [PMID: 25610615 PMCID: PMC4299368 DOI: 10.1177/2047981614555142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/20/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). PURPOSE To provide a better understanding of the early onset, time course, spatial development, and type of brain edema after TBI and to correlate MRI data and the cerebral energy state reflected by the metabolite adenosine triphosphate (ATP). MATERIAL AND METHODS The spontaneous development of lateral fluid percussion-induced TBI was investigated in the acute (6 h), subacute (48 h), and chronic (7 days) phase in rats by MRI of quantitative T2 and apparent diffusion coefficient (ADC) mapping as well as perfusion was combined with ATP-specific bioluminescence imaging and histology. RESULTS An induced TBI led to moderate to mild brain damages, reflected by transient, pronounced development of vasogenic edema and perfusion reduction. Heterogeneous ADC patterns indicated a parallel, but mixed expression of vasogenic and cytotoxic edema. Cortical ATP levels were reduced in the acute and subacute phase by 13% and 27%, respectively, but were completely normalized at 7 days after injury. CONCLUSION The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI.
Collapse
Affiliation(s)
- Marc Maegele
- Department of Traumatology, Orthopedic Surgery and Sporttraumatology, Cologne-Merheim Medical Center (CMMC), University of Witten-Herdecke, Campus Cologne-Merheim, Germany
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | - Ewa K Stuermer
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | - Alexander Hoeffgen
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Gummerbach, Gummersbach, Germany
| | - Ulla Uhlenkueken
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | - Angelika Mautes
- Institute for Neurosurgical Research, Department of Neurosurgery, University of Saarland, Homburg, Germany
| | - Nadine Schaefer
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | | | - Ute Schaefer
- FE Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Lu H, Lei X. The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury. Neural Regen Res 2014; 9:973-7. [PMID: 25206920 PMCID: PMC4146228 DOI: 10.4103/1673-5374.133150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 01/20/2023] Open
Abstract
After traumatic brain injury, vasogenic and cytotoxic edema appear sequentially on the involved side. Neuroimaging investigations of edema on the injured side have employed apparent diffusion coefficient measurements in diffusion tensor imaging. We investigated the changes occurring on the injured and uninjured sides using diffusion tensor imaging/apparent diffusion coefficient and histological samples in rats. We found that, on the injured side, that vasogenic edema appeared at 1 hour and intracellular edema appeared at 3 hours. Mixed edema was observed at 6 hours, worsening until 12–24 hours post-injury. Simultaneously, microglial cells proliferated at the trauma site. Apparent diffusion coefficient values increased at 1 hour, decreased at 6 hours, and increased at 12 hours. The uninjured side showed no significant pathological change at 1 hour after injury. Cytotoxic edema appeared at 3 hours, and vasogenic edema was visible at 6 hours. Cytotoxic edema persisted, but vasogenic edema tended to decrease after 12–24 hours. Despite this complex edema pattern on the uninjured side with associated pathologic changes, no significant change in apparent diffusion coefficient values was detected over the first 24 hours. Apparent diffusion coefficient values accurately detected the changes on the injured side, but did not detect the changes on the uninjured side, giving a false-negative result.
Collapse
Affiliation(s)
- Hong Lu
- Department of Radiology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan Province, China
| | - Xiaoyan Lei
- Department of Radiology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, Hainan Province, China
| |
Collapse
|
30
|
Warrington CD, Feeney DA, Ober CP, Jessen CR, Steward SM, Armién AG, Fletcher TF. Relative metabolite concentrations and ratios determined by use of 3-T region-specific proton magnetic resonance spectroscopy of the brain of healthy Beagles. Am J Vet Res 2014; 74:1291-303. [PMID: 24066913 DOI: 10.2460/ajvr.74.10.1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine relative concentrations of selected major brain tissue metabolites and their ratios and lobar variations by use of 3-T proton (hydrogen 1 [(1)H]) magnetic resonance spectroscopy (MRS) of the brain of healthy dogs. ANIMALS 10 healthy Beagles. PROCEDURES 3-T (1)H MRS at echo times of 144 and 35 milliseconds was performed on 5 transverse slices and 1 sagittal slice of representative brain lobe regions. Intravoxel parenchyma was classified as white matter, gray matter, or mixed (gray and white) and analyzed for relative concentrations (in arbitrary units) of N-acetylaspartate (NAA), choline, and creatine (ie, height at position of peak on MRS graph) as well as their ratios (NAA-to-choline, NAA-to-creatine, and choline-to-creatine ratios). Peak heights for metabolites were compared between echo times. Peak heights for metabolites and their ratios were correlated and evaluated among matter types. Yield was calculated as interpretable voxels divided by available lobar voxels. RESULTS Reference ranges of the metabolite concentration ratios were determined at an echo time of 35 milliseconds (NAA-to-choline ratio, 1.055 to 2.224; NAA-to-creatine ratio, 1.103 to 2.161; choline-to-creatine ratio, 0.759 to 1.332) and 144 milliseconds (NAA-to-choline ratio, 0.687 to 1.788; NAA-to-creatine ratio, 0.984 to 2.044; choline-to-creatine ratio, 0.828 to 1.853). Metabolite concentration ratios were greater in white matter than in gray matter. Voxel yields ranged from 43% for the temporal lobe to 100% for the thalamus. CONCLUSIONS AND CLINICAL RELEVANCE Metabolite concentrations and concentration ratios determined with 3-T (1)H MRS were not identical to those in humans and were determined for clinical and research investigations of canine brain disease.
Collapse
Affiliation(s)
- Christopher D Warrington
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | | | | | | | | | | | | |
Collapse
|
31
|
Zheng P, He B, Tong WS. Decrease in pituitary apparent diffusion coefficient in normal appearing brain correlates with hypopituitarism following traumatic brain injury. J Endocrinol Invest 2014; 37:309-12. [PMID: 24557849 DOI: 10.1007/s40618-014-0059-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Following traumatic brain injury (TBI), there may be persistent pituitary deficits despite the presence of normal conventional magnetic resonance (MR) images. Little is known about the association of microstructural changes in the pituitary with pituitary function in TBI patients with normal appearing brain on conventional MR images. Our aim was to quantify changes in pituitary apparent diffusion coefficient (ADC) of normal appearing brain in human traumatic brain injury. METHODS Forty-two patients admitted with a diagnosis of mild head injury having normal appearing brain imaging were scanned at 7 days after injury using a quantitative echo planar imaging acquisition to obtain ADC parametric map. Mean pituitary ADC values were compared with a control group (n = 30). RESULTS The TBI group showed a significant decrease in pituitary ADC compared to the controls. Furthermore, the mean ADC was much less in TBI patients with pituitary dysfunction compared to those with normal pituitary function. There was also a correlation between the development of pituitary dysfunction and decreasing ADC (r = 0.82, P<0.01). CONCLUSION Our findings suggest that pituitary ADC is a sensitive and independent marker of pituitary damage following traumatic insult, which is useful to detect the microstructural damage in pituitary in normal appearing brain.
Collapse
|
32
|
Longitudinal MR imaging study in the prediction of ischemic susceptibility after cerebral hypoperfusion in rats: Influence of aging and hypertension. Neuroscience 2014; 257:31-40. [DOI: 10.1016/j.neuroscience.2013.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/12/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022]
|
33
|
Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study. J Neurotrauma 2013; 30:1943-53. [PMID: 23829400 DOI: 10.1089/neu.2013.2928] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.
Collapse
Affiliation(s)
- Reed Selwyn
- 1 Department of Radiology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Specific neurochemicals measured with proton magnetic resonance spectroscopy ((1)H-MRS) may serve as biomarkers of pathological mechanism in the brain. We used high field in vivo (1)H-MRS to measure a detailed neurochemical profile after experimental traumatic brain injury (TBI) in rats. We characterized neurochemical changes in the contused cortex and the normal-appearing perilesional hippocampus over a time course from 1 hour to 2 weeks after injury. We found significant changes in 19 out of 20 neurochemicals in the cortex, and 9 out of 20 neurochemicals in the hippocampus. These changes provide evidence of altered cellular metabolic status after TBI, with specific compounds proposed to reflect edema, excitotoxicity, neuronal and glial integrity, mitochondrial status and bioenergetics, oxidative stress, inflammation, and cell membrane disruption. Our results support the utility of (1)H-MRS for monitoring cellular mechanisms of TBI pathology in animal models, and the potential of this approach for preclinical evaluation of novel therapies.
Collapse
|
35
|
van de Looij Y, Mauconduit F, Beaumont M, Valable S, Farion R, Francony G, Payen JF, Lahrech H. Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR IN BIOMEDICINE 2012; 25:93-103. [PMID: 21618304 DOI: 10.1002/nbm.1721] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/27/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Diffusion tensor imaging (DTI) was used to study traumatic brain injury. The impact-acceleration trauma model was used in rats. Here, in addition to diffusivities (mean, axial and radial), fractional anisotropy (FA) was used, in particular, as a parameter to characterize the cerebral tissue early after trauma. DTI was implemented at 7 T using fast spiral k-space sampling and the twice-refocused spin echo radiofrequency sequence for eddy current minimization. The method was carefully validated on different phantom measurements. DTI of a trauma group (n = 5), as well as a sham group (n = 5), was performed at different time points during 6 h following traumatic brain injury. Two cerebral regions, the cortex and corpus callosum, were analyzed carefully. A significant decrease in diffusivity in the trauma group versus the sham group was observed, suggesting the predominance of cellular edema in both cerebral regions. No significant FA change was detected in the cortex. In the corpus callosum of the trauma group, the FA indices were significantly lower. A net discontinuity in fiber reconstructions in the corpus callosum was observed by fiber tracking using DTI. Histological analysis using Hoechst, myelin basic protein and Bielschowsky staining showed fiber disorganization in the corpus callosum in the brains of the trauma group. On the basis of our histology results and the characteristics of the impact-acceleration model responsible for the presence of diffuse axonal injury, the detection of low FA caused by a drastic reduction in axial diffusivity and the presence of fiber disconnections of the DTI track in the corpus callosum were considered to be related to the presence of diffuse axonal injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Grenoble Institute of Neuroscience, Research Center, Inserm U836-UJF-CEA-CHU, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This article discusses brain trauma and impaired consciousness. It reviews the various states of impaired consciousness related to trauma, with an historical and current literature viewpoint. The causes and pathophysiology of impaired consciousness in concussion, diffuse axonal injury, and focal brain lesions are discussed and management options evaluated.
Collapse
Affiliation(s)
- Sandrine de Ribaupierre
- Division of Neurosurgery, Department of Clinical Neurological Sciences, University of Western Ontario, Victoria Hospital, 800 Commissioners Road East, London, ON N6A 5W9, Canada.
| |
Collapse
|
37
|
Xu S, Zhuo J, Racz J, Shi D, Roys S, Fiskum G, Gullapalli R. Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma 2011; 28:2091-102. [PMID: 21761962 DOI: 10.1089/neu.2010.1739] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding tissue alterations at an early stage following traumatic brain injury (TBI) is critical for injury management and limiting severe consequences from secondary injury. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) at 2 and 4 h following a controlled cortical impact injury in the rat brain using a 7.0 Tesla animal MRI system and compared profiles to baseline. Significant decrease in mean diffusivity (MD) and increased fractional anisotropy (FA) was found near the impact site (hippocampus and bilateral thalamus; p<0.05) immediately following TBI, suggesting cytotoxic edema. Although the DTI parameters largely normalized on the contralateral side by 4 h, a large inter-individual variation was observed with a trend towards recovery of MD and FA in the ipsilateral hippocampus and a sustained elevation of FA in the ipsilateral thalamus (p<0.05). Significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA, p=0.0002), glutamate (p=0.0006), myo-inositol (Ins, p=0.04), phosphocholine and glycerophosphocholine (PCh+GPC, p=0.03), and taurine (Tau, p=0.009) were observed ipsilateral to the injury as early as 2 h, while glutamine concentration increased marginally (p=0.07). These metabolic alterations remained sustained over 4 h after TBI. Significant reductions of Ins (p=0.024) and Tau (p=0.013) and marginal reduction of NAA (p=0.06) were also observed on the contralateral side at 4 h after TBI. Overall our findings suggest significant microstructural and metabolic alterations as early as 2 h following injury. The tendency towards normalization at 4 h from the DTI data and no further metabolic changes at 4 h from MRS suggest an optimal temporal window of about 3 h for interventions that might limit secondary damage to the brain. Results indicate that early assessment of TBI patients using DTI and MRS may provide valuable information on the available treatment window to limit secondary brain damage.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Oliva AA, Kang Y, Truettner JS, Sanchez-Molano J, Furones C, Yool AJ, Atkins CM. Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience 2011; 180:272-9. [PMID: 21329742 DOI: 10.1016/j.neuroscience.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/26/2022]
Abstract
Edema, the accumulation of excess fluid, is a major pathological change in the brain that contributes significantly to pathology and mortality after moderate to severe brain injury. Edema is regulated by aquaporin (AQP) channels which transport water across cellular membranes. Six AQPs are found in the brain (1, 3, 4, 5, 8, and 9), and previous studies have found that AQP4 is regulated after traumatic brain injury (TBI). To further understand how AQPs contribute to brain edema, we investigated whether expression of AQP1, 3, and 9 are also regulated after TBI. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury (FPI) or sham surgery. After induction of FPI, the injured, ipsilateral parietal cortex and hippocampus were dissected and analyzed by Western blotting. We observed a small decrease in AQP3 and 4 levels at 7 days after FPI in the ipsilateral, parietal cortex. Both AQP1 and 9 significantly increased within 30 min post-injury and remained elevated for up to 6 h in the ipsilateral, parietal cortex. Aqp1 and 9 mRNA levels were also significantly increased at 30 min post-FPI. Administration of an AQP1 and 4 antagonist, AqB013, non-significantly increased brain water content in sham, non-injured animals, and did not prevent edema formation 24 h after trauma in either the parietal cortex or hippocampus. These results indicate that Aqp1 and 9 mRNA and protein levels increase after moderate parasagittal FPI and that an inhibitor of AQP1 and 4 does not decrease edema after moderate parasagittal FPI.
Collapse
Affiliation(s)
- A A Oliva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Gasparetto EL, Rueda Lopes FC, Domingues RC, Domingues RC. Diffusion Imaging in Traumatic Brain Injury. Neuroimaging Clin N Am 2011; 21:115-25, viii. [DOI: 10.1016/j.nic.2011.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Lescot T, Fulla-Oller L, Palmier B, Po C, Beziaud T, Puybasset L, Plotkine M, Gillet B, Meric P, Marchand-Leroux C. Effect of Acute Poly(ADP-Ribose) Polymerase Inhibition by 3-AB on Blood–Brain Barrier Permeability and Edema Formation after Focal Traumatic Brain Injury in Rats. J Neurotrauma 2010; 27:1069-79. [DOI: 10.1089/neu.2009.1188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Lescot
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Laurence Fulla-Oller
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Bruno Palmier
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Christelle Po
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Tiphaine Beziaud
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Louis Puybasset
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Michel Plotkine
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Brigitte Gillet
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Philippe Meric
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Catherine Marchand-Leroux
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| |
Collapse
|