1
|
Aguado-Garrido M, García-Rama C, Romero-Ramírez L, Buzoianu-Anguiano V, Pérez-Rizo E, Kramer BW, Mey J. Improved Efficacy of Delayed Treatment with Human Bone Marrow-Derived Stromal Cells Evaluated in Rats with Spinal Cord Injury. Int J Mol Sci 2024; 25:1548. [PMID: 38338827 PMCID: PMC10855798 DOI: 10.3390/ijms25031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The treatment of spinal cord injury (SCI) with uncultivated human bone marrow-derived stromal cells (bmSCs) prepared by negative selection has been proposed to be therapeutically superior to treatment with stem cells that were expanded in vitro. To explore their use in clinical trials, we studied the functional effects of delayed application at 7 days after SCI by testing different doses of bmSCs. Spinal cord contusion injury was induced in adult male Wistar rats at the thoracic level T9. Human bmSCs were prepared by negative selection without expansion in vitro (NeuroCellsTM). Treatment consisted of one 150 µL injection into the cisterna magna containing 0.5 or 2.5 million fresh bmSCs or 2.5 million bmSCs. The recovery of motor functions was evaluated during a surveillance period of six weeks (6 W), during which spinal cords were assessed histologically. Treatment resulted in a significant, dose-dependent therapeutic effect on the recovery of motor performance. The histological analysis revealed a lower degree of axonal degeneration and better survival of neurons and oligodendrocytes in bmSCs treated rats. Our results support delayed intrathecal application of bmSCs prepared by negative selection without expansion in vitro as a treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jörg Mey
- Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Smaling A, Romero-Ramírez L, Mey J. Is TGR5 a therapeutic target for the treatment of spinal cord injury? J Neurochem 2023; 164:454-467. [PMID: 36409000 DOI: 10.1111/jnc.15727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Bile acids, which are synthesized in liver and colon, facilitate the digestion of dietary lipids. In addition to this metabolic function, they also act as molecular signals with activities in the nervous system. These are mediated primarily by a G-protein-coupled bile acid receptor (known as TGR5). Preceded by a long tradition in Chinese medicine, bile acids are now being investigated as therapeutic options in several neuropathologies. Specifically, one bile acid, tauroursodeoxycholic acid (TUDCA), which passes the blood-brain barrier and shows anti-inflammatory and anti-apoptotic effects, has been tested in animal models of spinal cord injury (SCI). In this review, we discuss the evidence for a therapeutic benefit in these preclinical experiments. At the time of writing, 12 studies with TGR5 agonists have been published that report functional outcomes with rodent models of SCI. Most investigations found cytoprotective effects and benefits regarding the recovery of sensorimotor function in the subacute phase. When TUDCA was applied in a hydrogel into the lesion site, a significant improvement was obtained at 2 weeks after SCI. However, no lasting improvements with TUDCA treatment were found, when animals were assessed in later, chronic stages. A combination of TUDCA with stem cell injection failed to improve the effect of the cellular treatment. We conclude that the evidence does not support the use of TUDCA as a treatment of SCI. Nevertheless, cytoprotective effects suggest that different modes of application or combinatorial therapies might still be explored.
Collapse
Affiliation(s)
- Anna Smaling
- School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Jörg Mey
- School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
3
|
Burke DA, Morehouse JR, Saraswat Ohri S, Magnuson DS. Unintentional Effects from Housing Enhancement Resulting in Functional Improvement in Spinal Cord-Injured Mice. Neurotrauma Rep 2023; 4:71-81. [PMID: 36726872 PMCID: PMC9886192 DOI: 10.1089/neur.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is well established that both positive and negative housing conditions of laboratory animals can affect behavioral, biochemical, and physiological responses. Housing enhancements have been shown to have beneficial effects on locomotor outcomes in rodents with spinal cord injury (SCI). Subsequent to an unplanned housing enhancement of the addition of a balcony to home cages by animal care personnel at a research facility, a retrospective analysis of multiple SCI studies was performed to determine whether outcomes differed before (four studies, N = 28) and after (four studies, N = 23) the addition of the balcony. Locomotor and morphological differences were compared after a mild-moderate T9 spinal cord contusion injury in wild-type mice. Post-injury assessments of locomotor function for 6 weeks included Basso Mouse Scale (BMS) and treadmill kinematic assessments (week 6). Balcony-housed mice showed greater improvements not only in basic locomotor functions (weight-supported stepping, balance) compared to those in standard housing, but also surpassed mice in standard housing without the balcony in higher-order locomotor recovery outcomes, including BMS late-stage recovery measures (paw, tail, and trunk indices). Additionally, balcony-housed mice had overall higher BMS scores, consistently attained more BMS subscores, and had better treadmill track width and stride length compared to those with no balcony. The housing enhancement of a balcony led to unforeseen consequences and unexpected higher recovery outcomes compared to mice in standard housing. This retrospective study highlights the importance of housing conditions in the key outcomes of locomotor recovery after incomplete contusive SCIs in mice.
Collapse
Affiliation(s)
- Darlene A. Burke
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Address correspondence to: Darlene A. Burke, MS, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, KY 40292, USA.
| | - Johnny R. Morehouse
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - Sujata Saraswat Ohri
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Health Sciences Campus, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Tai WL, Sun L, Li H, Gu P, Joosten EA, Cheung CW. Additive Effects of Environmental Enrichment and Ketamine on Neuropathic Pain Relief by Reducing Glutamatergic Activation in Spinal Cord Injury in Rats. Front Neurosci 2021; 15:635187. [PMID: 33828447 PMCID: PMC8019908 DOI: 10.3389/fnins.2021.635187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) impairs mobility and often results in complications like intractable neuropathic pain. A multi-approach management of this chronic pain condition has been encouraged, but little has been explored of the field. Here, we focus on the effect and underlying mechanism of environmental enrichment (EE), which promotes voluntary social and physical activities, combined with a clinical analgesic, ketamine, on SCI-induced neuropathic pain as well as motor dysfunction. We performed T13 spinal hemisection in rats, which induced unilateral motor impairment and neuropathic pain-like behaviors in the hindlimb. Treatment regimen started a week after SCI, which consists of ketamine administration (30 mg kg–1 day–1; intramuscular) for 10 days, or EE housing for 20 days, or their combination. Paw withdrawal response to mechanical and thermal stimuli, motor function, burrowing behaviors, and body weight was monitored. Spinal segments at T13 lesion and L4–L6 were collected for histopathological and protein analyses. The joint treatment of EE and ketamine provided greater relief of pain-like behaviors and locomotor recovery than did either paradigm alone. These improvements were associated with reduced cavitation area, astrogliosis, and perilesional phosphorylation of glutamate N-methyl-D-aspartate receptor (NMDAR). Concurrently, lumbar spinal analysis of NMDAR-linked excitatory markers in hypersensitization showed reduced activation of NMDAR, mitogen-activated protein kinase (MAPK) family, nuclear factor (NF)-κB, interleukin (IL)-1β signaling, and restored excitatory amino acid transporter 2 level. Our data support a better therapeutic efficacy of the combination, EE, and ketamine, in the attenuation of neuropathic pain and motor recovery by reducing spinal glutamatergic activation, signifying a potential multifaceted neurorehabilitation strategy to improve SCI patient outcome.
Collapse
Affiliation(s)
- W L Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - L Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - P Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - E A Joosten
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Department of Anesthesiology and Pain Management, University Pain Centre Maastricht (UPCM), Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - C W Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Sun L, Fleetwood-Walker S, Mitchell R, Joosten EA, Cheung CW. Prolonged Analgesia by Spinal Cord Stimulation Following a Spinal Injury Associated With Activation of Adult Neural Progenitors. Pain Pract 2020; 20:859-877. [PMID: 32474998 DOI: 10.1111/papr.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Responses of spinal progenitors to spinal cord stimulation (SCS) following spinal cord injury (SCI) in rats were assessed to reveal their potential contribution to SCS-induced analgesia. METHODS Spinal epidural electrodes were implanted in rats at T12 rostral to a quadrant dorsal horn injury at T13. Further groups additionally received either a microlesion to the dorsolateral funiculus (DLF) or gabapentin (10 mg/kg). SCS was performed at 25 Hz for 10 minutes on day 4 (early SCS) and at 10 Hz for 10 minutes on day 8 (late SCS) after injury. Paw withdrawal threshold (PWT) was measured before injury, 30 minutes before or after SCS, and before cull on day 14, followed by immunostaining assessment. RESULTS Paw withdrawal thresholds in uninjured animals (51.0 ± 4.0 g) were markedly reduced after SCI (17.3 ± 2.2 g). This was significantly increased by early SCS (38.5 ± 5.2 g, P < 0.01) and further enhanced by late SCS (50.9 ± 1.9 g, P < 0.01) over 6 days. Numbers of neural progenitors expressing nestin, Sox2, and doublecortin (DCX) in the spinal dorsal horn were increased 6 days after SCS by 6-fold, 2-fold, and 2.5-fold, respectively (P < 0.05 to 0.01). The elevated PWT evoked by SCS was abolished by DLF microlesions (48.9 ± 2.6 g vs. 19.0 ± 3.9 g, P < 0.01) and the number of nestin-positive cells was reduced to the level without SCS (P < 0.05). Gabapentin enhanced late SCS-induced analgesia from 37.0 ± 3.9 g to 54.0 ± 0.8 g (P < 0.01) and increased gamma-aminobutyric acid (GABA)-ergic neuronal marker vesicular GABA transporter-positive newborn cells 2-fold (P < 0.01). CONCLUSIONS Spinal progenitor cells appear to be activated by SCS via descending pathways, which may be enhanced by gabapentin and potentially contributes to relief of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Liting Sun
- Brain and Spinal Cord Innovation Research Center, The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Sue Fleetwood-Walker
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Rory Mitchell
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Elbert A Joosten
- Department of Anesthesiology/Pain Management, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, University of Hong Kong, HKSAR, China
| |
Collapse
|
6
|
Tai LW, Yeung SC, Cheung CW. Enriched Environment and Effects on Neuropathic Pain: Experimental Findings and Mechanisms. Pain Pract 2018; 18:1068-1082. [PMID: 29722923 DOI: 10.1111/papr.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain inflicts tremendous biopsychosocial suffering for patients worldwide. However, safe and effective treatment of neuropathic pain is a prominent unmet clinical need. Environmental enrichment (EE) is an emerging cost-effective nonpharmacological approach to alleviate neuropathic pain and complement rehabilitation care. We present here a review of preclinical studies in ascertaining the efficacy of EE for neuropathic pain. Their proposed mechanisms, including the suppression of ascending nociceptive signaling to the brain, enhancement of the descending inhibitory system, and neuroprotection of the peripheral and central nervous systems, may collectively reduce pain perception and improve somatic and emotional functioning in neuropathic pain. The current evidence offers critical insights for future preclinical research and the translational application of EE in clinical pain management.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
7
|
Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology 2018; 145:13-24. [PMID: 29499273 DOI: 10.1016/j.neuropharm.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care issue that affects over ten million people worldwide. Treatment options are limited with numerous failures resulting from single therapies. Fortunately, several preclinical studies have shown that combination treatment strategies may afford greater improvement and perhaps can lead to successful clinical translation, particularly if one of the therapies is neurorehabilitation. The aim of this review is to highlight TBI studies that combined environmental enrichment (EE), a preclinical model of neurorehabilitation, with pharmacotherapies. A series of PubMed search strategies yielded only nine papers that fit the criteria. The consensus is that EE provides robust neurobehavioral, cognitive, and histological improvement after experimental TBI and that the combination of EE with some pharmacotherapies can lead to benefits beyond those revealed by single therapies. However, it is noted that EE can be challenged by drugs such as the acetylcholinesterase inhibitor, donepezil, and the antipsychotic drug, haloperidol, which attenuate its efficacy. These findings may help shape clinical neurorehabilitation strategies to more effectively improve patient outcome. Potential mechanisms for the EE and pharmacotherapy-induced effects are also discussed. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
8
|
A Systematic Look at Environmental Modulation and Its Impact in Brain Development. Trends Neurosci 2018; 41:4-17. [DOI: 10.1016/j.tins.2017.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022]
|
9
|
Prosser-Loose EJ, Hassan A, Mitchell GS, Muir GD. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury. J Neurotrauma 2015; 32:1403-12. [DOI: 10.1089/neu.2014.3789] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Erin J. Prosser-Loose
- Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Atiq Hassan
- Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gordon S. Mitchell
- Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gillian D. Muir
- Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
del Mar N, von Buttlar X, Yu AS, Guley NH, Reiner A, Honig MG. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol 2015; 271:53-71. [PMID: 25957630 DOI: 10.1016/j.expneurol.2015.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly, our findings of extensive axonal injury also caution that repeated trauma is likely to have cumulative adverse consequences for both brain and spinal cord.
Collapse
Affiliation(s)
- Nobel del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xinyu von Buttlar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Angela S Yu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Natalie H Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Abstract
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as “neurons that fire together, wire together.” This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
12
|
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci 2014; 8:156. [PMID: 25228861 PMCID: PMC4151031 DOI: 10.3389/fnsys.2014.00156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023] Open
Abstract
The brain's life-long capacity for experience-dependent plasticity allows adaptation to new environments or to changes in the environment, and to changes in internal brain states such as occurs in brain damage. Since the initial discovery by Hebb (1947) that environmental enrichment (EE) was able to confer improvements in cognitive behavior, EE has been investigated as a powerful form of experience-dependent plasticity. Animal studies have shown that exposure to EE results in a number of molecular and morphological alterations, which are thought to underpin changes in neuronal function and ultimately, behavior. These consequences of EE make it ideally suited for investigation into its use as a potential therapy after neurological disorders, such as traumatic brain injury (TBI). In this review, we aim to first briefly discuss the effects of EE on behavior and neuronal function, followed by a review of the underlying molecular and structural changes that account for EE-dependent plasticity in the normal (uninjured) adult brain. We then extend this review to specifically address the role of EE in the treatment of experimental TBI, where we will discuss the demonstrated sensorimotor and cognitive benefits associated with exposure to EE, and their possible mechanisms. Finally, we will explore the use of EE-based rehabilitation in the treatment of human TBI patients, highlighting the remaining questions regarding the effects of EE.
Collapse
Affiliation(s)
- Dasuni S Alwis
- Department of Physiology, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University Clayton, VIC, Australia
| |
Collapse
|
13
|
Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast 2014; 2014:451639. [PMID: 25110592 PMCID: PMC4106224 DOI: 10.1155/2014/451639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
Collapse
|