1
|
Kok HJ, Fletcher DB, Oster JC, Conover CF, Barton ER, Yarrow JF. Transcriptomics reveals transient and dynamic muscle fibrosis and atrophy differences following spinal cord injury in rats. J Cachexia Sarcopenia Muscle 2024; 15:1309-1323. [PMID: 38764311 PMCID: PMC11294049 DOI: 10.1002/jcsm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.
Collapse
Affiliation(s)
- Hui Jean Kok
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Drew B. Fletcher
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Jacob C. Oster
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Christine F. Conover
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Elisabeth R. Barton
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Joshua F. Yarrow
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Division of Endocrinology, Diabetes and MetabolismCollege of Medicine, University of FloridaGainesvilleFLUSA
- Brain Rehabilitation Research Center, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Eastern Colorado Geriatrics Research, Education, and Clinical CenterRocky Mountain Regional Veterans Affairs Medical Center, VA Eastern Colorado Health Care SystemAuroraCOUSA
| |
Collapse
|
2
|
Harrigan ME, Filous AR, Vadala CP, Webb A, Pietrzak M, Sahenk Z, Prüss H, Reiser PJ, Popovich PG, Arnold WD, Schwab JM. Lesion level-dependent systemic muscle wasting after spinal cord injury is mediated by glucocorticoid signaling in mice. Sci Transl Med 2023; 15:eadh2156. [PMID: 38117902 DOI: 10.1126/scitranslmed.adh2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.
Collapse
Affiliation(s)
- Markus E Harrigan
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Angela R Filous
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher P Vadala
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Zarife Sahenk
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65212, USA
| | - Jan M Schwab
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physical Medicine and Rehabilitation, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
4
|
Koseki H, Osaki M, Honda Y, Sunagawa S, Imai C, Shida T, Matsumura U, Sakamoto J, Tomonaga I, Yokoo S, Mizukami S, Okita M. Progression of microstructural deterioration in load-bearing immobilization osteopenia. PLoS One 2022; 17:e0275439. [PMID: 36331919 PMCID: PMC9635731 DOI: 10.1371/journal.pone.0275439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Immobilization osteopenia is a major healthcare problem in clinical and social medicine. However, the mechanisms underlying this bone pathology caused by immobilization under load-bearing conditions are not yet fully understood. This study aimed to evaluate sequential changes to the three-dimensional microstructure of bone in load-bearing immobilization osteopenia using a fixed-limb rat model. Materials and method Eight-week-old specific-pathogen-free male Wistar rats were divided into an immobilized group and a control group (n = 60 each). Hind limbs in the immobilized group were fixed using orthopedic casts with fixation periods of 1, 2, 4, 8, and 12 weeks. Feeding and weight-bearing were freely permitted. Length of the right femur was measured after each fixation period and bone microstructure was analyzed by micro-computed tomography. The architectural parameters of cortical and cancellous bone were analyzed statistically. Results Femoral length was significantly shorter in the immobilized group than in the control group after 2 weeks. Total area and marrow area were significantly lower in the immobilized group than in the control group from 1 to 12 weeks. Cortical bone area, cortical thickness, and polar moment of inertia decreased significantly after 2 weeks. Some cancellous bone parameters showed osteoporotic changes at 2 weeks after immobilization and the gap with the control group widened as the fixation period extended (P < 0.05). Conclusion The present results indicate that load-bearing immobilization triggers early deterioration of microstructure in both cortical and cancellous bone after 2 weeks.
Collapse
Affiliation(s)
- Hironobu Koseki
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuichiro Honda
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Sunagawa
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Rehabilitation, Wajinkai Hospital, Nagasaki, Japan
| | - Chieko Imai
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Shida
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Umi Matsumura
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Iku Tomonaga
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seiichi Yokoo
- Department of Nursing, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Satoshi Mizukami
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Kim J, Park J, Mikami T. Regular Low-Intensity Exercise Prevents Cognitive Decline and a Depressive-Like State Induced by Physical Inactivity in Mice: A New Physical Inactivity Experiment Model. Front Behav Neurosci 2022; 16:866405. [PMID: 35600989 PMCID: PMC9121131 DOI: 10.3389/fnbeh.2022.866405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Regular exercise has already been established as a vital strategy for maintaining physical health via experimental results in humans and animals. In addition, numerous human studies have reported that physical inactivity is a primary factor that causes obesity, muscle atrophy, metabolic diseases, and deterioration in cognitive function and mental health. Regardless, an established animal experimental method to examine the effect of physical inactivity on physiological, biochemical, and neuroscientific parameters is yet to be reported. In this study, we made a new housing cage, named as the physical inactivity (PI) cage, to investigate the effect of physical inactivity on cognitive function and depressive-like states in mice and obtained the following experimental results by its use. We first compared the daily physical activity of mice housed in the PI and standard cages using the nano-tag method. The mice’s physical activity levels in the PI cage decreased to approximately half of that in the mice housed in the standard cage. Second, we examined whether housing in the PI cage affected plasma corticosterone concentration. The plasma corticosterone concentration did not alter before, 1 week, or 10 weeks after housing. Third, we investigated whether housing in the PI cage for 10 weeks affected cognitive function and depressive behavior. Housing in an inactive state caused a cognitive decline and depressive state in the mice without increasing body weight and plasma corticosterone. Finally, we examined the effect of regular low-intensity exercise on cognitive function and depressive state in the mice housed in the PI cage. Physical inactivity decreased neuronal cell proliferation, blood vessel density, and gene expressions of vascular endothelial growth factors and brain-derived neurotrophic factors in the hippocampus. In addition, regular low-intensity exercise, 30 min of treadmill running at a 5–15 m/min treadmill speed 3 days per week, prevented cognitive decline and the onset of a depressive-like state caused by physical inactivity. These results showed that our novel physical inactivity model, housing the mice in the PI cage, would be an adequate and valuable experimental method for examining the effect of physical inactivity on cognitive function and a depressive-like state.
Collapse
Affiliation(s)
- Jimmy Kim
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonghyuk Park
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Tokyo, Japan
- *Correspondence: Toshio Mikami,
| |
Collapse
|
6
|
Pharmacologic approaches to prevent skeletal muscle atrophy after spinal cord injury. Curr Opin Pharmacol 2021; 60:193-199. [PMID: 34461564 PMCID: PMC9190029 DOI: 10.1016/j.coph.2021.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Skeletal muscle atrophy is a hallmark of severe spinal cord injury (SCI) that is precipitated by the neural insult and paralysis. Additionally, other factors may influence muscle loss, including systemic inflammation, low testosterone, low insulin-like growth factor (IGF)-1, and high-dose glucocorticoid treatment. The signaling cascades that drive SCI-induced muscle loss are common among most forms of disuse atrophy and include ubiquitin-proteasome signaling and others. However, differing magnitudes and patterns of atrophic signals exist after SCI versus other disuse conditions and are accompanied by endogenous inhibition of IGF-1/PI3K/Akt signaling, which combine to produce exceedingly rapid atrophy. Several well-established anabolic agents, including androgens and myostatin inhibitors, display diminished ability to prevent SCI-induced atrophy, while ursolic acid and β2-agonists more effectively attenuate muscle loss. Strategies combining physical rehabilitation regimens to reload the paralyzed limbs with drugs targeting the underlying molecular pathways hold the greatest potential to improve muscle recovery after severe SCI.
Collapse
|
7
|
Gonzalez-Ruiz C, Cordero-Anguiano P, Morales-Guadarrama A, Mondragón-Lozano R, Sánchez-Torres S, Salgado-Ceballos H, Villarreal F, Meaney E, Ceballos G, Nájera N. (-)-Epicatechin reduces muscle waste after complete spinal cord transection in a murine model: role of ubiquitin-proteasome system. Mol Biol Rep 2020; 47:8975-8985. [PMID: 33151476 DOI: 10.1007/s11033-020-05954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
The skeletal muscle mass reduces 30-60% after spinal cord injury, this is mostly due to protein degradation through ubiquitin-proteasome system. In this work, we propose that the flavanol (-)-epicatechin, due its widespread biological effects on muscle health, can prevent muscle mass decrease after spinal cord injury. Thirty-six female Long Evans rats were randomized into 5 groups: (1) Spinal cord injury 7 days, (2) Spinal cord injury + (-)-epicatechin 7 days, (3) Spinal cord injury 30 days, (4) Spinal cord injury + (-)-epicatechin 30 days and (5) Sham (Only laminectomy). Hind limb perimeter, muscle cross section area, fiber cross section area and ubiquitin-proteasome system protein expression together with total protein ubiquitination were assessed. At 30 days Spinal cord injury group lost 49.52 ± 2.023% of muscle cross section area (-)-epicatechin treated group lost only 24.28 ± 15.45% being a significant difference. Ubiquitin-proteasome markers showed significant changes. FOXO1a increased in spinal cord injury group vs Sham (-)-epicatechin reduced this increase. In spinal cord injury group MAFbx increased significantly vs Sham but decrease in (-)-epicatechin treatment group at 30 days. At 7 and 30 days MuRF1 increased in the spinal cord injury and decreased in the (-)-epicatechin group. The global protein ubiquitination increases after spinal cord injury, epicatechin treatment induce a significant decrease in protein ubiquitination. These results suggest that (-)-epicatechin reduces the muscle waste after spinal cord injury through down regulation of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Cristian Gonzalez-Ruiz
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Paola Cordero-Anguiano
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Axayacatl Morales-Guadarrama
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico, Mexico
| | - Rodrigo Mondragón-Lozano
- Consejo Nacional de Ciencia y Tecnología, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Stephanie Sánchez-Torres
- División de Ciencias Biológicas y de la Salud, Posgrado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | | | - Eduardo Meaney
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico.
| | - Nayelli Nájera
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico.
| |
Collapse
|
8
|
Bennett BT, Mohamed JS, Alway SE. The Effects of Calcium- β-Hydroxy- β-Methylbutyrate on Aging-Associated Apoptotic Signaling and Muscle Mass and Function in Unloaded but Nonatrophied Extensor Digitorum Longus Muscles of Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3938672. [PMID: 32774671 PMCID: PMC7396042 DOI: 10.1155/2020/3938672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Nerve and Muscle, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| |
Collapse
|
9
|
Chariker JH, Sharp M, Ohri SS, Gomes C, Brabazon F, Harman KA, Whittemore SR, Petruska JC, Magnuson DSK, Rouchka EC. RNA-seq data of soleus muscle tissue after spinal cord injury under conditions of inactivity and applied exercise. Data Brief 2020; 28:105056. [PMID: 32226812 PMCID: PMC7093805 DOI: 10.1016/j.dib.2019.105056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
Reduced muscle mass and increased fatiguability are major complications after spinal cord injury (SCI), and often hinder the rehabilitation efforts of patients. Such detriments to the musculoskeletal system, and the concomitant reduction in level of activity, contribute to secondary complications such as cardiovascular disease, diabetes, bladder dysfunction and liver damage. As a result of decreased weight-bearing capacity after SCI, muscles undergo morphological, metabolic, and contractile changes. Recent studies have shown that exercise after SCI decreases muscle wasting and reduces the burden of secondary complications. Here, we describe RNA sequencing data for detecting chronic transcriptomic changes in the rat soleus after SCI at two levels of injury severity, under conditions of restricted in-cage activity and two methods of applied exercise, swimming or shallow water walking. We demonstrate that the sequenced data are of good quality and show a high alignment rate to the Rattus norvegicus reference assembly (Rn6). The raw data, along with UCSC Genome Browser tracks created to facilitate exploration of gene expression, are available in the NCBI Gene Expression Omnibus (GEO; GSE129694).
Collapse
Affiliation(s)
- Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, 522 East Gray St., Louisville, KY, 40202, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, 522 East Gray St., Louisville, KY, 40202, USA
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - Cynthia Gomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Fiona Brabazon
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
| | - Kathryn A. Harman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Health & Sport Sciences, University of Louisville, 2100 South Floyd Street, Louisville, KY, 40208, USA
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
| | - David SK. Magnuson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, Suite 1500, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, 522 East Gray St., Louisville, KY, 40202, USA
- Department of Computer and Engineering Science, Speed School of Engineering, University of Louisville, Duthie Center for Engineering, 2301 South 3rd St., Louisville, KY, 40292, USA
| |
Collapse
|
10
|
Yarrow JF, Kok HJ, Phillips EG, Conover CF, Lee J, Bassett TE, Buckley KH, Reynolds MC, Wnek RD, Otzel DM, Chen C, Jiron JM, Graham ZA, Cardozo C, Vandenborne K, Bose PK, Aguirre JI, Borst SE, Ye F. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury. J Neurosci Res 2019; 98:843-868. [PMID: 31797423 DOI: 10.1002/jnr.24564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hui Jean Kok
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ean G Phillips
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Jimmy Lee
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Taylor E Bassett
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Kinley H Buckley
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Michael C Reynolds
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Cong Chen
- Divison of Orthopedics and Rehabilitation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Zachary A Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Departments of Medicine, Icahn School of Medicine, New York, NY, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.,Departments of Medicine, Icahn School of Medicine, New York, NY, USA.,Rehabilitation Medicine, Icahn School of Medicine, New York, NY, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Prodip K Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Division of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jose Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Stephen E Borst
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Fan Ye
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| |
Collapse
|
11
|
Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke. Biomech Model Mechanobiol 2019; 19:61-80. [DOI: 10.1007/s10237-019-01196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
|
12
|
Argetsinger LC, Trimble SA, Roberts MT, Thompson JE, Ugiliweneza B, Behrman AL. Sensitivity to change and responsiveness of the Segmental Assessment of Trunk Control (SATCo) in children with spinal cord injury. Dev Neurorehabil 2019; 22:260-271. [PMID: 29787329 DOI: 10.1080/17518423.2018.1475429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE The purpose of this study was to assess the sensitivity and responsiveness of the Segmental Assessment of Trunk Control (SATCo) for evaluating trunk control in children with spinal cord injury (SCI) receiving activity-based locomotor training (AB-LT). METHODS Prospective study of nine outcomes for consecutively enrolled children in outpatient AB-LT. To evaluate sensitivity to change, linear-mixed models were constructed and adjusted for covariates: age at and time since SCI. To evaluate responsiveness, standardized response means and 95% confidence intervals were estimated per outcome. RESULTS SATCo scores increased significantly (p < 0.05) regardless of chronicity, initial score, and injury level. The SATCo was the most responsive measure and the only outcome demonstrating a large effect size after 3 months of therapy. CONCLUSIONS Children with SCI receiving AB-LT improved trunk control regardless of chronicity, initial impairment, or prior experience. SATCo sensitivity and responsiveness support its usefulness in measuring trunk control in children with SCI.
Collapse
Affiliation(s)
| | | | | | - Jennifer E Thompson
- b Department of Pediatrics , University of Louisville , Louisville , KY , USA
| | - Beatrice Ugiliweneza
- c Department of Neurological Surgery , University of Louisville , Louisville , KY , USA
| | - Andrea L Behrman
- c Department of Neurological Surgery , University of Louisville , Louisville , KY , USA
| |
Collapse
|
13
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Phillips EG, Beggs LA, Ye F, Conover CF, Beck DT, Otzel DM, Ghosh P, Bassit ACF, Borst SE, Yarrow JF. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury. PLoS One 2018; 13:e0194440. [PMID: 29579075 PMCID: PMC5868788 DOI: 10.1371/journal.pone.0194440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Sclerostin is a circulating osteocyte-derived glycoprotein that negatively regulates Wnt-signaling after binding the LRP5/LRP6 co-receptors. Pharmacologic sclerostin inhibition produces bone anabolic effects after spinal cord injury (SCI), however, the effects of sclerostin-antibody (Scl-Ab) on muscle morphology remain unknown. In comparison, androgen administration produces bone antiresorptive effects after SCI and some, but not all, studies have reported that testosterone treatment ameliorates skeletal muscle atrophy in this context. Our purposes were to determine whether Scl-Ab prevents hindlimb muscle loss after SCI and compare the effects of Scl-Ab to testosterone enanthate (TE), an agent with known myotrophic effects. Male Sprague-Dawley rats aged 5 months received: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe contusion SCI, (C) SCI+TE (7.0 mg/wk, im), or (D) SCI+Scl-Ab (25 mg/kg, twice weekly, sc). Twenty-one days post-injury, SCI animals exhibited a 31% lower soleus mass in comparison to SHAM, accompanied by >50% lower soleus muscle fiber cross-sectional area (fCSA) (p<0.01 for all fiber types). Scl-Ab did not prevent soleus atrophy, consistent with the relatively low circulating sclerostin concentrations and with the 91-99% lower LRP5/LRP6 gene expressions in soleus versus tibia (p<0.001), a tissue with known anabolic responsiveness to Scl-Ab. In comparison, TE partially prevented soleus atrophy and increased levator ani/bulbocavernosus (LABC) mass by 30-40% (p<0.001 vs all groups). The differing myotrophic responsiveness coincided with a 3-fold higher androgen receptor gene expression in LABC versus soleus (p<0.01). This study provides the first direct evidence that Scl-Ab does not prevent soleus muscle atrophy in rodents after SCI and suggests that variable myotrophic responses in rodent muscles after androgen administration are influenced by androgen receptor expression.
Collapse
Affiliation(s)
- Ean G. Phillips
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Luke A. Beggs
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Fan Ye
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Christine F. Conover
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, United States of America
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States of America
| | - Anna C. F. Bassit
- Orthopedics Department, Shriners Hospital for Children, Montreal, QC, Canada
| | - Stephen E. Borst
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Joshua F. Yarrow
- Research Service, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States of America
| |
Collapse
|
15
|
Vohra R, Batra A, Forbes SC, Vandenborne K, Walter GA. Magnetic Resonance Monitoring of Disease Progression in mdx Mice on Different Genetic Backgrounds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2060-2070. [PMID: 28826559 DOI: 10.1016/j.ajpath.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Genetic modifiers alter disease progression in both preclinical models and subjects with Duchenne muscular dystrophy (DMD). Using multiparametric magnetic resonance (MR) techniques, we compared the skeletal and cardiac muscles of two different dystrophic mouse models of DMD, which are on different genetic backgrounds, the C57BL/10ScSn-Dmdmdx (B10-mdx) and D2.B10-Dmdmdx (D2-mdx). The proton transverse relaxation constant (T2) using both MR imaging and spectroscopy revealed significant age-related differences in dystrophic skeletal and cardiac muscles as compared with their age-matched controls. D2-mdx muscles demonstrated an earlier and accelerated decrease in muscle T2 compared with age-matched B10-mdx muscles. Diffusion-weighted MR imaging indicated differences in the underlying muscle structure between the mouse strains. The fractional anisotropy, mean diffusion, and radial diffusion of water varied significantly between the two dystrophic strains. Muscle structural differences were confirmed by histological analyses of the gastrocnemius, revealing a decreased muscle fiber size and increased fibrosis in skeletal muscle fibers of D2-mdx mice compared with B10-mdx and control. Cardiac involvement was also detected in D2-mdx myocardium based on both decreased function and myocardial T2. These data indicate that MR parameters may be used as sensitive biomarkers to detect fibrotic tissue deposition and fiber atrophy in dystrophic strains.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
16
|
Yarrow JF, Phillips EG, Conover CF, Bassett TE, Chen C, Teurlings T, Vasconez A, Alerte J, Prock H, Jiron JM, Flores M, Aguirre JI, Borst SE, Ye F. Testosterone Plus Finasteride Prevents Bone Loss without Prostate Growth in a Rodent Spinal Cord Injury Model. J Neurotrauma 2017; 34:2972-2981. [PMID: 28338402 DOI: 10.1089/neu.2016.4814] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN; type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week-old male Sprague-Dawley rats received: 1) SHAM surgery (T9 laminectomy); 2) severe (250 kdyne) contusion SCI; 3) SCI+TE (7.0 mg/week, intramuscular); or 4) SCI+TE+FIN (5 mg/kg/day, subcutaneous). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed by histomorphometry) were elevated post-SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed by microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN coadministration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides a rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline post-SCI.
Collapse
Affiliation(s)
- Joshua F Yarrow
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,2 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| | - Ean G Phillips
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Christine F Conover
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Taylor E Bassett
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Cong Chen
- 3 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Tyler Teurlings
- 3 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Andrea Vasconez
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jonathan Alerte
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Hannah Prock
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jessica M Jiron
- 4 Physiological Sciences, University of Florida , Gainesville, Florida
| | - Micah Flores
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - J Ignacio Aguirre
- 4 Physiological Sciences, University of Florida , Gainesville, Florida
| | - Stephen E Borst
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,2 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| | - Fan Ye
- 1 Research Service, Malcom Randall Department of Veterans Affairs Medical Center , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
17
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
18
|
Schwarz A, Pick C, Harrach R, Stein G, Bendella H, Ozsoy O, Ozsoy U, Schoenau E, Jaminet P, Sarikcioglu L, Dunlop S, Angelov D. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:123-36. [PMID: 26032204 PMCID: PMC5133715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.
Collapse
Affiliation(s)
- A. Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - C. Pick
- Department of Anatomy I, University of Cologne, Germany
| | - R. Harrach
- Department of Anatomy I, University of Cologne, Germany
| | - G. Stein
- Department of Orthopedics and Trauma Surgery, University of Cologne, Germany
| | - H. Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | - O. Ozsoy
- Department of Physiology, Akdeniz University of Antalya, Turkey
| | - U. Ozsoy
- Department of Anatomy, Akdeniz University of Antalya, Turkey
| | - E. Schoenau
- Children’s Hospital, University of Cologne, Germany
| | - P. Jaminet
- Department of Hand-, Plastic-, and Reconstructive Surgery with Burn Unit, BG-Trauma Centre, University of Tuebingen, Germany
| | - L. Sarikcioglu
- Department of Anatomy, Akdeniz University of Antalya, Turkey
| | - S. Dunlop
- School of Animal Biology, The University of Western Australia, Australia
| | - D.N. Angelov
- Department of Anatomy I, University of Cologne, Germany,Corresponding author: Prof. Dr. Doychin N. Angelov, M.D., Ph.D., Institut 1 für Anatomie der Universität zu Köln, Joseph-Stelzmann-Strasse 9, D-50924 Köln, Germany E-mail:
| |
Collapse
|
19
|
Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomech Model Mechanobiol 2014; 14:195-215. [PMID: 25199941 DOI: 10.1007/s10237-014-0607-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle undergoes continuous turnover to adapt to changes in its mechanical environment. Overload increases muscle mass, whereas underload decreases muscle mass. These changes are correlated with, and enabled by, structural alterations across the molecular, subcellular, cellular, tissue, and organ scales. Despite extensive research on muscle adaptation at the individual scales, the interaction of the underlying mechanisms across the scales remains poorly understood. Here, we present a thorough review and a broad classification of multiscale muscle adaptation in response to a variety of mechanical stimuli. From this classification, we suggest that a mathematical model for skeletal muscle adaptation should include the four major stimuli, overstretch, understretch, overload, and underload, and the five key players in skeletal muscle adaptation, myosin heavy chain isoform, serial sarcomere number, parallel sarcomere number, pennation angle, and extracellular matrix composition. Including this information in multiscale computational models of muscle will shape our understanding of the interacting mechanisms of skeletal muscle adaptation across the scales. Ultimately, this will allow us to rationalize the design of exercise and rehabilitation programs, and improve the long-term success of interventional treatment in musculoskeletal disease.
Collapse
|
20
|
Yarrow JF, Ye F, Balaez A, Mantione JM, Otzel DM, Chen C, Beggs LA, Baligand C, Keener JE, Lim W, Vohra RS, Batra A, Borst SE, Bose PK, Thompson FJ, Vandenborne K. Bone loss in a new rodent model combining spinal cord injury and cast immobilization. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2014; 14:255-266. [PMID: 25198220 PMCID: PMC8349504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Characterize bone loss in our newly developed severe contusion spinal cord injury (SCI) plus hindlimb immobilization (IMM) model and determine the influence of muscle contractility on skeletal integrity after SCI. METHODS Female Sprague-Dawley rats were randomized to: (a) intact controls, (b) severe contusion SCI euthanized at Day 7 (SCI-7) or (c) Day 21 (SCI-21), (d) 14 days IMM-alone, (e) SCI+IMM, or (f) SCI+IMM plus 14 days body weight supported treadmill exercise (SCI+IMM+TM). RESULTS SCI-7 and SCI-21 exhibited a >20% reduction in cancellous volumetric bone mineral density (vBMD) in the hindlimbs (p⋜0.01), characterized by reductions in cancellous bone volume (cBV/TV%), trabecular number (Tb.N), and trabecular thickness. IMM-alone induced no observable bone loss. SCI+IMM exacerbated cancellous vBMD deficits with values being >45% below Controls (p⋜0.01) resulting from reduced cBV/TV% and Tb.N. SCI+IMM also produced the greatest cortical bone loss with distal femoral cortical area and cortical thickness being 14-28% below Controls (p⋜0.01) and bone strength being 37% below Controls (p⋜0.01). SCI+IMM+TM partially alleviated bone deficits, but values remained below Controls. CONCLUSIONS Residual and/or facilitated muscle contractility ameliorate bone decrements after severe SCI. Our novel SCI+IMM model represents a clinically-relevant means of assessing strategies to prevent SCI-induced skeletal deficits.
Collapse
Affiliation(s)
- J F Yarrow
- Research Service, Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States, 32608
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL, Vandenborne K. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 2013; 98:1038-52. [PMID: 23291913 DOI: 10.1113/expphysiol.2012.070722] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.
Collapse
Affiliation(s)
- Fan Ye
- Department of Physical Therapy, PO Box 100154, Room 1142, PHHP Building, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|