1
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
2
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
3
|
de Neeling M, Liessens D, Depreitere B. Relationship between psychosocial and psychiatric risk factors and poor long-term outcome following mild traumatic brain injury: A systematic review. Eur J Neurol 2023; 30:1540-1550. [PMID: 36708085 DOI: 10.1111/ene.15713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE Mild traumatic brain injury (mTBI) has an estimated worldwide incidence of >60 million per year, and long-term persistent postconcussion symptoms (PPCS) are increasingly recognized as being predicted by psychosocial variables. Patients at risk for PPCS may be amenable to closer follow-up to treat modifiable symptoms and prevent chronicity. In this regard, similarities seem to exist with psychosocial risk factors for chronicity in other health-related conditions. However, as opposed to other conditions, no screening instruments exist for mTBI. METHODS A systematic search of the literature on psychological and psychiatric predictors of long-term symptoms in mTBI was performed by two independent reviewers using PubMed, Embase, and Web of Science. RESULTS Fifty papers were included in the systematic analysis. Anxiety, depressive symptoms, and emotional distress early after injury predict PPCS burden and functional outcome up to 1 year after injury. In addition, coping styles and preinjury psychiatric disorders and mental health also correlate with PPCS burden and functional outcome. Associations between PPCS and personality and beliefs were reported, but either these effects were small or evidence was limited. CONCLUSIONS Early psychological and psychiatric factors may negatively interact with recovery potential to increase the risk of chronicity of PPCS burden after mTBI. This opens opportunities for research on screening tools and early intervention in patients at risk.
Collapse
Affiliation(s)
| | - Dirk Liessens
- Saint Camillus Psychiatric Center, Bierbeek, Belgium
| | | |
Collapse
|
4
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
5
|
Return to work after mild traumatic brain injury: association with positive CT and MRI findings. Acta Neurochir (Wien) 2022; 164:1707-1717. [PMID: 35639189 PMCID: PMC9233630 DOI: 10.1007/s00701-022-05244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Background Return to work (RTW) might be delayed in patients with complicated mild traumatic brain injury (MTBI), i.e., MTBI patients with associated traumatic intracranial lesions. However, the effect of different types of lesions on RTW has not studied before. We investigated whether traumatic intracranial lesions detected by CT and MRI are associated with return to work and post-concussion symptoms in patients with MTBI. Methods We prospectively followed up 113 adult patients with MTBI that underwent a brain MRI within 3–17 days after injury. Return to work was assessed with one-day accuracy up to one year after injury. Rivermead Post-Concussion Symptoms Questionnaire (RPQ) and Glasgow Outcome Scale Extended (GOS-E) were conducted one month after injury. A Kaplan–Meier log-rank analysis was performed to analyze the differences in RTW. Results Full RTW-% one year after injury was 98%. There were 38 patients with complicated MTBI, who had delayed median RTW compared to uncomplicated MTBI group (17 vs. 6 days), and more post-concussion symptoms (median RPQ 12.0 vs. 6.5). Further, RTW was more delayed in patients with multiple types of traumatic intracranial lesions visible in MRI (31 days, n = 19) and when lesions were detected in the primary CT (31 days, n = 24). There were no significant differences in GOS-E. Conclusions The imaging results that were most clearly associated with delayed RTW were positive primary CT and multiple types of lesions in MRI. RTW-% of patients with MTBI was excellent and a single intracranial lesion does not seem to be a predictive factor of disability to work.
Collapse
|
6
|
Mortaheb S, Filippini MM, Kaux JF, Annen J, Lejeune N, Martens G, Calderón MAF, Laureys S, Thibaut A. Neurophysiological Biomarkers of Persistent Post-concussive Symptoms: A Scoping Review. Front Neurol 2021; 12:687197. [PMID: 34566837 PMCID: PMC8459021 DOI: 10.3389/fneur.2021.687197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Persistent post-concussive symptoms (PCS) consist of neurologic and psychological complaints persisting after a mild traumatic brain injury (mTBI). It affects up to 50% of mTBI patients, may cause long-term disability, and reduce patients' quality of life. The aim of this review was to examine the possible use of different neuroimaging modalities in PCS. Methods: Articles from Pubmed database were screened to extract studies that investigated the relationship between any neuroimaging features and symptoms of PCS. Descriptive statistics were applied to report the results. Results: A total of 80 out of 939 papers were included in the final review. Ten examined conventional MRI (30% positive finding), 24 examined diffusion weighted imaging (54.17% positive finding), 23 examined functional MRI (82.61% positive finding), nine examined electro(magneto)encephalography (77.78% positive finding), and 14 examined other techniques (71% positive finding). Conclusion: MRI was the most widely used technique, while functional techniques seem to be the most sensitive tools to evaluate PCS. The common functional patterns associated with symptoms of PCS were a decreased anti-correlation between the default mode network and the task positive network and reduced brain activity in specific areas (most often in the prefrontal cortex). Significance: Our findings highlight the importance to use functional approaches which demonstrated a functional alteration in brain connectivity and activity in most studies assessing PCS.
Collapse
Affiliation(s)
- Sepehr Mortaheb
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Physiology of Cognition Lab., GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Maria Maddalena Filippini
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Neuromotor and Rehabilitation Department, Azienda Unita Sanitaria Locale-Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCSS) di Reggio Emilia, Reggio Emilia, Italy
| | - Jean-François Kaux
- Physical Medicine and Sport Traumatology Department, Sports, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athletes Health, FIMS Collaborative Centre of Sport Medicine, University and University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium.,Institute of NeuroScience, University of Louvain, Brussels, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Physical Medicine and Sport Traumatology Department, Sports, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athletes Health, FIMS Collaborative Centre of Sport Medicine, University and University Hospital of Liège, Liège, Belgium
| | | | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Brain Clinic, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
7
|
Huovinen A, Marinkovic I, Isokuortti H, Korvenoja A, Mäki K, Nybo T, Raj R, Melkas S. Traumatic Microbleeds in Mild Traumatic Brain Injury Are Not Associated with Delayed Return to Work or Persisting Post-Concussion Symptoms. J Neurotrauma 2021; 38:2400-2406. [PMID: 33847170 DOI: 10.1089/neu.2021.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The main objective of this prospective cohort study was to evaluate whether traumatic microbleeds (TMBs) are a significant prognostic factor of return to work (RTW), post-traumatic symptoms, and overall recovery in patients with mild traumatic brain injury (mTBI). One hundred and thirteen patients with mTBI were recruited from the Helsinki University Hospital emergency units. All patients underwent multi-contrast 3T magnetic resonance imaging (MRI) 3-17 days after mTBI. Patients were evaluated in the Traumatic Brain Injury Outpatient Clinic of Helsinki University Hospital 1 month after injury. Post-concussion symptoms were assessed with the Post-Concussion Symptom Questionnaire (RPQ) and overall recovery was assessed with the Glasgow Outcome Scale Extended (GOS-E). Their time to RTW was continuously measured up to 1 year after TBI. Median RTW was 9 days (interquartile range [IQR] 4-30) after mTBI and full RTW rate after 1 year was 98%. Patients with TMBs (n = 22) did not have more post-concussion symptoms (median RPQ 10.0 vs. 7.0, p = 0.217) or worse overall recovery (58% vs. 56% with GOS-E = 8, p = 0.853) than patients without TMBs (n = 91). There was no significant difference in time to RTW (13.5 vs. 7.0 days, p = 0.063). In this study, patients with TMBs did not have delayed RTW or more post-concussion symptoms than other patients with mTBI. TMBs in mTBI do not seem to be a significant prognostic factor of RTW.
Collapse
Affiliation(s)
- Antti Huovinen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ivan Marinkovic
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Isokuortti
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Korvenoja
- Department of HUS Medical Imaging Center, Radiology, and Departments of University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Mäki
- Department of Neuropsychology and University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taina Nybo
- Department of Neuropsychology and University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Melkas
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Johansson B. Mental Fatigue after Mild Traumatic Brain Injury in Relation to Cognitive Tests and Brain Imaging Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115955. [PMID: 34199339 PMCID: PMC8199529 DOI: 10.3390/ijerph18115955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 01/09/2023]
Abstract
Most people recover within months after a mild traumatic brain injury (TBI) or concussion, but some will suffer from long-term fatigue with a reduced quality of life and the inability to maintain their employment status or education. For many people, mental fatigue is one of the most distressing and long-lasting symptoms following an mTBI. No efficient treatment options can be offered. The best method for measuring fatigue today is with fatigue self-assessment scales, there being no objective clinical tests available for mental fatigue. The aim here is to provide a narrative review and identify fatigue in relation to cognitive tests and brain imaging methods. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Birgitta Johansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45 Göteborg, Sweden
| |
Collapse
|
9
|
Mild traumatic brain injury at a single neurosurgical center in South africa. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Karlsen RH, Saksvik SB, Stenberg J, Lundervold AJ, Olsen A, Rautio I, Folvik L, Håberg AK, Vik A, Karr JE, Iverson GL, Skandsen T. Examining the Subacute Effects of Mild Traumatic Brain Injury Using a Traditional and Computerized Neuropsychological Test Battery. J Neurotrauma 2020; 38:74-85. [PMID: 32948095 DOI: 10.1089/neu.2019.6922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study investigates subacute cognitive effects of mild traumatic brain injury (MTBI) in the Trondheim Mild TBI Study, as measured, in part, by the neuropsychological test battery of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) program, including computerized tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and traditional paper-and-pencil tests. We investigated whether cognitive function was associated with injury severity: intracranial traumatic lesions on neuroimaging, witnessed loss of consciousness (LOC), or post-traumatic amnesia (PTA) >1 h. Further, we explored which of the tests in the CENTER-TBI battery might be associated with the largest subacute effects of MTBI (i.e., at 2 weeks post-injury). We recruited 177 patients with MTBI (16-59 years of age) from a regional trauma center and an outpatient clinic,79 trauma control participants, and 81 community control participants. The MTBI group differed from community controls only on one traditional test of processing speed (coding; p = 0.009, Cliff's delta [Δ] = 0.20). Patients with intracranial abnormalities performed worse than those without on a traditional test (phonemic verbal fluency; p = 0.043, Δ = 0.27), and patients with LOC performed differently on the Attention Switching Task from the CANTAB (p = 0.020, Δ = -0.20). Patients with PTA >1 h performed worse than those with <1 h on 10 measures, from traditional tests and the CANTAB (Δ = 0.33-0.20), likely attributable, at least in part, to pre-existing differences in intellectual functioning between groups. In general, those with MTBI had good neuropsychological outcome 2 weeks after injury and no particular CENTER-TBI computerized or traditional tests seemed to be more sensitive to subtle cognitive deficits.
Collapse
Affiliation(s)
- Rune Hatlestad Karlsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Simen Berg Saksvik
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jonas Stenberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Alexander Olsen
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ida Rautio
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Line Folvik
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Justin E Karr
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital and Spaulding Research Institute, Home Base Program, Red Sox Foundation and Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital and Spaulding Research Institute, Home Base Program, Red Sox Foundation and Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
11
|
Hudson T. Functional Medicine: A View from Physical Medicine and Rehabilitation. Phys Med Rehabil Clin N Am 2020; 31:527-540. [PMID: 32981576 DOI: 10.1016/j.pmr.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using the functional medicine rubric in physical medicine and rehabilitation (PM&R), a physiatrist can capitalize on addressing the root causes and downstream effects in patients with chronic diseases. Similar to the International Classification of Function model in rehabilitation, the functional medicine model uses biopsychosocial understanding with a systems biology approach to find fulcrum points to create the biggest impact on health care. Given the position of rehabilitation medicine with the type and location of patients, both functional medicine and PM&R would benefit from a mutual partnership.
Collapse
Affiliation(s)
- Timothy Hudson
- Veterans Integrative Pain Center, Physical Medicine and Rehabilitation Service, Central Virginia Veterans Healthcare System, Richmond, VA, USA; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
12
|
Stenberg J, Karr JE, Terry DP, Saksvik SB, Vik A, Skandsen T, Silverberg ND, Iverson GL. Developing Cognition Endpoints for the CENTER-TBI Neuropsychological Test Battery. Front Neurol 2020; 11:670. [PMID: 32765400 PMCID: PMC7379151 DOI: 10.3389/fneur.2020.00670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Measuring cognitive functioning is common in traumatic brain injury (TBI) research, but no universally accepted method for combining several neuropsychological test scores into composite, or summary, scores exists. This study examined several possible composite scores for the test battery used in the large-scale study Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI). Methods: Participants with mild traumatic brain injury (MTBI; n = 140), orthopedic trauma (n = 72), and healthy community controls (n = 70) from the Trondheim MTBI follow-up study completed the CENTER-TBI test battery at 2 weeks after injury, which includes both traditional paper-and-pencil tests and tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Seven composite scores were calculated for the paper and pencil tests, the CANTAB tests, and all tests combined (i.e., 21 composites): the overall test battery mean (OTBM); global deficit score (GDS); neuropsychological deficit score-weighted (NDS-W); low score composite (LSC); and the number of scores ≤5th percentile, ≤16th percentile, or <50th percentile. Results: The OTBM and the number of scores <50th percentile composites had distributional characteristics approaching a normal distribution. The other composites were in general highly skewed and zero-inflated. When the MTBI group, the trauma control group, and the community control group were compared, effect sizes were negligible to small for all composites. Subgroups with vs. without loss of consciousness at the time of injury did not differ on the composite scores and neither did subgroups with complicated vs. uncomplicated MTBIs. Intercorrelations were high within the paper-and-pencil composites, the CANTAB composites, and the combined composites and lower between the paper-and-pencil composites and the CANTAB composites. Conclusion: None of the composites revealed significant differences between participants with MTBI and the two control groups. Some of the composite scores were highly correlated and may be redundant. Additional research on patients with moderate to severe TBIs is needed to determine which scores are most appropriate for TBI clinical trials.
Collapse
Affiliation(s)
- Jonas Stenberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Justin E Karr
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| | - Douglas P Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Simen B Saksvik
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Noah D Silverberg
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Division of Physical Medicine & Rehabilitation, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| |
Collapse
|
13
|
Stockbridge MD, Newman R. Enduring Cognitive and Linguistic Deficits in Individuals With a History of Concussion. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 28:1554-1570. [PMID: 31487473 DOI: 10.1044/2019_ajslp-18-0196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose The purpose of this research is to determine whether individuals with a history of concussion retain enduring differences in narrative writing tasks, which necessitate rapid and complex integration of both cognitive and linguistic faculties. Method Participants aged 12-40 years old, who did or did not have a remote history of concussion, were recruited to take an online survey that included writing both a familiar and a novel narrative. They also were asked to complete multiple tasks targeting word-level and domain general cognitive skills, so that their performance could be interpreted across these dimensions. Results Participants with a concussion history were largely similar to participants with no history of brain injury across tasks that targeted a single skill in isolation. However, participants with prior concussions demonstrated difficulty in providing both key content and details when presented with a novel video and asked to provide a summary of what they had just seen. Number of lifetime concussions predicted the inclusion of key content when summarizing the video. Thus, differences in cognitive and linguistic skills required for written narrative language may continue to be present far after concussion, despite average normative levels of performance on tasks targeting these skills in isolation. Conclusions These findings suggest that individuals with a concussion history, particularly a history of multiple concussions, may continue to experience difficulties for a long period after injury and are likely to benefit from more complex and ecologically valid assessment prior to discharge. Individuals with a concussion history who return to full participation in work, school, and recreational activities may continue to benefit from assistance when asked to rapidly acquire and distill novel information, as is often required in academic and professional environments.
Collapse
Affiliation(s)
| | - Rochelle Newman
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| |
Collapse
|
14
|
Determining Outcome in Children and Adolescents After Concussion: Viewing Things More Holistically. J Orthop Sports Phys Ther 2019; 49:855-863. [PMID: 31597547 DOI: 10.2519/jospt.2019.8918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pediatric and adolescent concussion is an increasingly high-profile public health issue, but it is also a highly heterogeneous phenomenon. Many factors interact dynamically to influence the recovery trajectory of adolescents and children. Diagnostic assessment must include domains other than self-reported symptoms, yet many prognostic models of outcome focus solely on the presence or absence of postconcussion symptoms to determine recovery. Function after concussion (recovery or persistence of problems) is the result of an interaction between biological, psychological, and social factors. Despite biopsychosocial models of assessment being advocated in rehabilitation for the last 20 years, they are still not routinely implemented in the evaluation of concussions, along the recovery trajectory, in children and adolescents. The International Classification of Functioning, Disability and Health is a framework anchored in a biopsychosocial perspective that can guide clinicians and researchers to include multiple perspectives in their assessments or research designs. By focusing on the patient as a person, researchers and clinicians can provide a more holistic approach that has the potential to contribute to a more successful and sustainable pediatric and adolescent concussion care model. J Orthop Sports Phys Ther 2019;49(11):855-863. Epub 9 Oct 2019. doi:10.2519/jospt.2019.8918.
Collapse
|
15
|
King NS. ‘Mild Traumatic Brain Injury’ and ‘Sport-related Concussion’: Different languages and mixed messages? Brain Inj 2019; 33:1556-1563. [DOI: 10.1080/02699052.2019.1655794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nigel S. King
- Consultant Clinical Neuropsychologist
- Oxford Institute of Clinical Psychology Training, University of Oxford, Warneford Hospital, Oxford, UK
- Community Head Injury Service, The Camborne Centre, Bucks Healthcare NHS Trust, Aylesbury, UK
| |
Collapse
|
16
|
Wallace EJ, Mathias JL, Ward L. Diffusion tensor imaging changes following mild, moderate and severe adult traumatic brain injury: a meta-analysis. Brain Imaging Behav 2019; 12:1607-1621. [PMID: 29383621 DOI: 10.1007/s11682-018-9823-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging quantifies the asymmetry (fractional anisotropy; FA) and amount of water diffusion (mean diffusivity/apparent diffusion coefficient; MD/ADC) and has been used to assess white matter damage following traumatic brain injury (TBI). In healthy brains, diffusion is constrained by the organization of axons, resulting in high FA and low MD/ADC. Following a TBI, diffusion may be altered; however the exact nature of these changes has yet to be determined. A meta-analysis was therefore conducted to determine the location and extent of changes in DTI following adult TBI. The data from 44 studies that compared the FA and/or MD/ADC data from TBI and Control participants in different regions of interest (ROIs) were analyzed. The impact of injury severity, post-injury interval (acute: ≤ 1 week, subacute: 1 week-3 months, chronic: > 3 months), scanner details and acquisition parameters were investigated in subgroup analyses, with the findings indicating that mild TBI should be examined separately to that of moderate to severe injuries. Lower FA values were found in 88% of brain regions following mild TBI and 92% following moderate-severe TBI, compared to Controls. MD/ADC was higher in 95% and 100% of brain regions following mild and moderate-severe TBI, respectively. Moderate to severe TBI resulted in larger changes in FA and MD/ADC than mild TBI. Overall, changes to FA and MD/ADC were widespread, reflecting more symmetric and a higher amount of diffusion, indicative of white matter damage.
Collapse
Affiliation(s)
- Erica J Wallace
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia
| | - Jane L Mathias
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia.
| | - Lynn Ward
- School of Psychology, Faculty of Medical & Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Lange RT, Yeh PH, Brickell TA, Lippa SM, French LM. Postconcussion symptom reporting is not associated with diffusion tensor imaging findings in the subacute to chronic phase of recovery in military service members following mild traumatic brain injury. J Clin Exp Neuropsychol 2019; 41:497-511. [PMID: 30871410 DOI: 10.1080/13803395.2019.1585518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The purpose of this study was to examine the relation between white matter integrity of the brain and postconcussion symptom reporting following mild traumatic brain injury (MTBI). METHOD Participants were 109 U.S. military service members (91.7% male) who had sustained a MTBI (n = 88) or orthopedic injury without TBI (trauma controls, TC, n = 21), enrolled from the Walter Reed National Military Medical Center, Bethesda, Maryland. Participants completed a battery of neurobehavioral symptom measures and underwent diffusion tensor imaging (DTI; General Electric 3T) of the whole brain, on average 44.9 months post injury (SD = 42.3). Measures of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated for 18 regions of interest (ROIs). Participants in the MTBI group were divided into two subgroups based on International Classification of Diseases-10th Revision (ICD-10) Category C criteria for postconcussion syndrome (PCS): PCS-present (n = 41) and PCS-absent (n = 47). RESULTS The PCS-present group had significantly worse scores on all 13 neurobehavioral measures than the PCS-absent group (p < .001, d = 0.87-2.50) and TC group (p < .003, d = 0.84-2.06). For all ROIs, there were no significant main effects across the three groups for FA, MD, AD, and RD (all ps >.03). Pairwise comparisons revealed no significant differences for all ROIs when using FA and RD, and only two significant pairwise differences were found between PCS-present and PCS-absent groups when using MD and AD [i.e., anterior thalamic radiation and cingulate gyrus (supracallosal) bundle]. CONCLUSIONS Consistent with past research, but not all studies, postconcussion symptom reporting was not associated with white matter integrity in the subacute to chronic phase of recovery following MTBI.
Collapse
Affiliation(s)
- Rael T Lange
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,c Department of Psychiatry , University of British Columbia , Vancouver , BC , Canada
| | - Ping-Hong Yeh
- b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA
| | - Tracey A Brickell
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,d Department of Psychiatry , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Sara M Lippa
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA
| | - Louis M French
- a Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , USA.,b National Intrepid Center of Excellence , Walter Reed National Military Medical Center , Bethesda , MD , USA.,d Department of Psychiatry , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
18
|
Karlsen RH, Einarsen C, Moe HK, Håberg AK, Vik A, Skandsen T, Eikenes L. Diffusion kurtosis imaging in mild traumatic brain injury and postconcussional syndrome. J Neurosci Res 2019; 97:568-581. [PMID: 30675907 PMCID: PMC6590310 DOI: 10.1002/jnr.24383] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Aims of this study were to investigate white matter (WM) and thalamus microstructure 72 hr and 3 months after mild traumatic brain injury (TBI) with diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI), and to relate DKI and DTI findings to postconcussional syndrome (PCS). Twenty-five patients (72 hr = 24; 3 months = 23) and 22 healthy controls were recruited, and DKI and DTI data were analyzed with Tract-Based Spatial Statistics (TBSS) and a region-of-interest (ROI) approach. Patients were categorized into PCS or non-PCS 3 months after injury according to the ICD-10 research criteria for PCS. In TBSS analysis, significant differences between patients and controls were seen in WM, both in the acute stage and 3 months after injury. Fractional anisotropy (FA) reductions were more widespread than kurtosis fractional anisotropy (KFA) reductions in the acute stage, while KFA reductions were more widespread than the FA reductions at 3 months, indicating the complementary roles of DKI and DTI. When comparing patients with PCS (n = 9), without PCS (n = 16), and healthy controls, in the ROI analyses, no differences were found in the acute DKI and DTI metrics. However, near-significant differences were observed for several DKI metrics obtained in WM and thalamus concurrently with symptom assessment (3 months after injury). Our findings indicate a combined utility of DKI and DTI in detecting WM microstructural alterations after mild TBI. Moreover, PCS may be associated with evolving alterations in brain microstructure, and DKI may be a promising tool to detect such changes.
Collapse
Affiliation(s)
- Rune Hatlestad Karlsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Cathrine Einarsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hans Kristian Moe
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
19
|
Wu YC, Mustafi SM, Harezlak J, Kodiweera C, Flashman LA, McAllister TW. Hybrid Diffusion Imaging in Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:2377-2390. [PMID: 29786463 PMCID: PMC6196746 DOI: 10.1089/neu.2017.5566] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white matter alterations in 19 patients with mTBI and 23 other trauma control patients. Within 15 days (standard deviation = 10) of brain injury, all subjects underwent magnetic resonance HYDI and were assessed with a battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) was used for voxel-wise statistical analyses within the white matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between-group interaction effects. The advanced diffusion imaging techniques, including neurite orientation dispersion and density imaging (NODDI) and q-space analyses, appeared to be more sensitive then classic diffusion tensor imaging. Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5–9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests, including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between groups (R2 > 0.71 and pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients >0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.
Collapse
Affiliation(s)
- Yu-Chien Wu
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sourajit M Mustafi
- 1 Department of Radiology and Imaging Sciences, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jaroslaw Harezlak
- 2 Department of Epidemiology and Biostatistics, School of Public Health, Indiana University , Bloomington, Indiana
| | - Chandana Kodiweera
- 3 Dartmouth Brain Imaging Center, Dartmouth College , Hanover, New Hampshire
| | - Laura A Flashman
- 4 Department of Psychiatry, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center , Lebanon, New Hampshire
| | - Thomas W McAllister
- 5 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
20
|
Iverson GL, Terry DP, Karr JE, Panenka WJ, Silverberg ND. Perceived Injustice and Its Correlates after Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:1156-1166. [DOI: 10.1089/neu.2017.5402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital, Boston, Massachusetts
- Home Base, a Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | - Douglas P. Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital, Boston, Massachusetts
- Home Base, a Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | - Justin E. Karr
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - William J. Panenka
- British Columbia Neuropsychiatry Program, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Noah D. Silverberg
- Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, Canada
| |
Collapse
|
21
|
Terry DP, Brassil M, Iverson GL, Panenka WJ, Silverberg ND. Effect of depression on cognition after mild traumatic brain injury in adults. Clin Neuropsychol 2018; 33:124-136. [DOI: 10.1080/13854046.2018.1459853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Douglas P. Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- , Spaulding Rehabilitation Hospital, Boston, MA, USA
- , Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
- , MassGeneral Hospital for Children Sport Concussion Program, Boston, MA, USA
| | - Michelle Brassil
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- , Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- , Spaulding Rehabilitation Hospital, Boston, MA, USA
- , Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
- , MassGeneral Hospital for Children Sport Concussion Program, Boston, MA, USA
| | - William J. Panenka
- British Columbia Neuropsychiatry Program, University of British Columbia, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Noah D. Silverberg
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Division of Physical Medicine & Rehabilitation, University of British Columbia,Vancouver, Canada
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, GF Strong Rehab Centre, Vancouver, Canada
| |
Collapse
|
22
|
Vascak M, Jin X, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 2018; 28:1625-1644. [PMID: 28334184 PMCID: PMC5907353 DOI: 10.1093/cercor/bhx058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Xiaotao Jin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| |
Collapse
|
23
|
Kenzie ES, Parks EL, Bigler ED, Wright DW, Lim MM, Chesnutt JC, Hawryluk GWJ, Gordon W, Wakeland W. The Dynamics of Concussion: Mapping Pathophysiology, Persistence, and Recovery With Causal-Loop Diagramming. Front Neurol 2018; 9:203. [PMID: 29670568 PMCID: PMC5893805 DOI: 10.3389/fneur.2018.00203] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication-all strides that would benefit diagnosis, prognosis, and treatment in the clinic.
Collapse
Affiliation(s)
- Erin S. Kenzie
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Elle L. Parks
- Systems Science Program, Portland State University, Portland, OR, United States
| | - Erin D. Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - David W. Wright
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Miranda M. Lim
- Sleep Disorders Clinic, Division of Hospital and Specialty Medicine, Research Service, VA Portland Health Care System, Portland, OR, United States
- Departments of Neurology, Medicine, and Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - James C. Chesnutt
- TBI/Concussion Program, Orthopedics & Rehabilitation, Neurology and Family Medicine, Oregon Health & Science University, Portland, OR, United States
| | | | - Wayne Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wayne Wakeland
- Systems Science Program, Portland State University, Portland, OR, United States
| |
Collapse
|
24
|
White Matter Associations With Performance Validity Testing in Veterans With Mild Traumatic Brain Injury: The Utility of Biomarkers in Complicated Assessment. J Head Trauma Rehabil 2018; 31:346-59. [PMID: 26360002 DOI: 10.1097/htr.0000000000000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Failure on performance validity tests (PVTs) is common in Veterans with histories of mild traumatic brain injury (mTBI), leading to questionable validity of clinical presentations. PARTICIPANTS Using diffusion tensor imaging, we investigated white matter (WM) integrity and cognition in 79 Veterans with history of mTBI who passed PVTs (n = 43; traumatic brain injury [TBI]-passed), history of mTBI who failed at least 1 PVT (n = 13; TBI-failed), and military controls (n = 23; MCs) with no history of TBI. RESULTS The TBI-failed group demonstrated significantly lower cognitive scores relative to MCs and the TBI-passed group; however, no such differences were observed between MCs and the TBI-passed group. On a global measure of WM integrity (ie, WM burden), the TBI-failed group showed more overall WM abnormalities than the other groups. However, no differences were observed between the MCs and TBI-passed group on WM burden. Interestingly, regional WM analyses revealed abnormalities in the anterior internal capsule and cingulum of both TBI subgroups relative to MCs. Moreover, compared with the TBI-passed group, the TBI-failed group demonstrated significantly decreased WM integrity in the corpus callosum. CONCLUSIONS Findings revealed that, within our sample, WM abnormalities are evident in those who fail PVTs. This study adds to the burgeoning PVT literature by suggesting that poor PVT performance does not negate the possibility of underlying WM abnormalities in military personnel with history of mTBI.
Collapse
|
25
|
Davies M, Jacobs A, Brody DL, Friess SH. Delayed Hypoxemia after Traumatic Brain Injury Exacerbates Long-Term Behavioral Deficits. J Neurotrauma 2018; 35:790-801. [PMID: 29149808 PMCID: PMC5831743 DOI: 10.1089/neu.2017.5354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxemia during initial stabilization of patients with severe traumatic brain injury (TBI) has been associated with poorer outcomes. However, the effects of delayed hypoxemia occurring during intensive care post-TBI on outcome is unclear. Pre-clinical models of TBI have rarely shown cognitive or behavioral deficits beyond 6 weeks post-injury and commonly have not included modeling of secondary insults. We have previously developed a murine model of TBI followed by delayed hypoxemia to model the secondary insult of hypoxemia and brain hypoxia occurring in the intensive care setting. Understanding long-term effects of delayed hypoxemia post-TBI in our murine model is critical for future testing of candidate therapeutics targeting secondary brain hypoxia. For this study, forty 5-week-old male mice were randomized to controlled cortical impact (CCI; N = 24) or sham surgery (N = 16). One day later, awake animals were randomized to 60 min of hypoxemia or normoxemia. Six months after initial injury, animals underwent behavior testing (Morris water maze, social interaction, and tail suspension) before euthanasia for immunohistochemistry (IHC) assessments. At 6 months post-injury, mice experiencing CCI and hypoxemia (CCI+H) had longer swim distances to the hidden platform (51 cm) compared to CCI alone (26 cm) or sham animals (22 cm). During social interaction assessments, CCI + H mice spent less time interacting with novel stimulus mice (79 sec) than CCI alone (101 sec) or sham animals (139 sec). CCI + H had larger lesion volumes compared to CCI alone (14.0% vs. 9.9%; p < 0.003). Glial fibrillary acidic protein IHC at 6 months post-injury demonstrated increased astrogliosis in the ipsilateral white matter of CCI + H compared to CCI alone. To summarize, this clinically relevant model of delayed hypoxia post-TBI resulted in long-term behavioral deficits and evidence of exacerbated structural injury.
Collapse
Affiliation(s)
- McKenzie Davies
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Addison Jacobs
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| |
Collapse
|
26
|
Chong CD, Schwedt TJ. Research Imaging of Brain Structure and Function After Concussion. Headache 2018; 58:827-835. [DOI: 10.1111/head.13269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
|
27
|
Mercier E, Tardif PA, Cameron PA, Batomen Kuimi BL, Émond M, Moore L, Mitra B, Frenette J, De Guise E, Ouellet MC, Bordeleau M, Le Sage N. Prognostic Value of S-100β Protein for Prediction of Post-Concussion Symptoms after a Mild Traumatic Brain Injury: Systematic Review and Meta-Analysis. J Neurotrauma 2018; 35:609-622. [PMID: 28969486 DOI: 10.1089/neu.2017.5013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This systematic review and meta-analysis aimed to determine the prognostic value of S-100β protein to identify patients with post-concussion symptoms after a mild traumatic brain injury (mTBI). A search strategy was submitted to seven databases from their inception to October 2016. Individual patient data were requested. Cohort studies evaluating the association between S-100β protein level and post-concussion symptoms assessed at least seven days after the mTBI were considered. Outcomes were dichotomized as persistent (≥3 months) or early (≥7 days <3 months). Our search strategy yielded 23,298 citations of which 29 studies including between seven and 223 patients (n = 2505) were included. Post-concussion syndrome (PCS) (16 studies) and neuropsychological symptoms (9 studies) were the most frequently assessed outcomes. The odds of having persistent PCS (odds ratio [OR] 0.62, 95% confidence interval [CI]: 0.34-1.12, p = 0.11, I2 0% [n = five studies]) in patients with an elevated S-100β protein serum level were not significantly different from those of patients with normal values while the odds of having early PCS (OR 1.67, 95% CI: 0.98-2.85, p = 0.06, I2 38% [n = five studies]) were close to statistical significance. Similarly, having an elevated S-100β protein serum level was not associated with the odds of returning to work at six months (OR 2.31, 95% CI: 0.50-10.64, p = 0.28, I2 22% [n = two studies]). Overall risk of bias was considered moderate. Results suggest that the prognostic biomarker S-100β protein has a low clinical value to identify patients at risk of persistent post-concussion symptoms. Variability in injury to S-100ß protein sample time, mTBI populations, and outcomes assessed could potentially explain the lack of association and needs further evaluation.
Collapse
Affiliation(s)
- Eric Mercier
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia
| | - Pier-Alexandre Tardif
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Peter A Cameron
- 3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia .,5 National Trauma Research Institute , The Alfred Hospital, Melbourne, Victoria, Australia
| | - Brice Lionel Batomen Kuimi
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Marcel Émond
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,6 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Lynne Moore
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,6 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,7 Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval , Québec, Canada
| | - Biswadev Mitra
- 3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia .,5 National Trauma Research Institute , The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jérôme Frenette
- 8 Centre de Recherche et Centre Hospitalier Universitaire de Québec , Québec, Canada
| | - Elaine De Guise
- 9 Research-Institute, McGill University Health Centre , Montreal, Québec, Canada .,10 Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montréal , Québec, Canada
| | - Marie-Christine Ouellet
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,8 Centre de Recherche et Centre Hospitalier Universitaire de Québec , Québec, Canada
| | - Martine Bordeleau
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Natalie Le Sage
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| |
Collapse
|
28
|
Walter A, Finelli K, Bai X, Arnett P, Bream T, Seidenberg P, Lynch S, Johnson B, Slobounov S. Effect of Enzogenol® Supplementation on Cognitive, Executive, and Vestibular/Balance Functioning in Chronic Phase of Concussion. Dev Neuropsychol 2017; 42:93-103. [PMID: 28452602 DOI: 10.1080/87565641.2016.1256404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study examined the feasibility of Enzogenol® as a potential treatment modality for concussed individuals with residual symptoms in the chronic phase. Forty-two student-athletes with history of sport-related concussion were enrolled, comparing Enzogenol® versus placebo. Testing was conducted using virtual reality (VR) and electroencephalography (EEG), with neuropsychological (NP) tasks primarily used to induce cognitive challenges. After six weeks, the Enzogenol® group showed enhanced frontal-midline theta, and decreased parietal theta power, indicating reduced mental fatigue. Subjects enrolled in the Enzogenol® group also self-reported reduced mental fatigue and sleep problems. This suggests that Enzogenol® has the potential to improve brain functioning in the chronic phase of concussion.
Collapse
Affiliation(s)
- A Walter
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,b Department of Kinesiology , Pennsylvania State University , University Park , Pennsylvania
| | - K Finelli
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,b Department of Kinesiology , Pennsylvania State University , University Park , Pennsylvania
| | - X Bai
- c Social, Life, and Engineering Sciences Imaging Center , Pennsylvania State University , University Park , Pennsylvania
| | - P Arnett
- c Social, Life, and Engineering Sciences Imaging Center , Pennsylvania State University , University Park , Pennsylvania
| | - T Bream
- d Department of Psychology , Pennsylvania State University , University Park , Pennsylvania
| | - P Seidenberg
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,e Intercollegiate Athletics , Pennsylvania State University , University Park , Pennsylvania
| | - S Lynch
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,e Intercollegiate Athletics , Pennsylvania State University , University Park , Pennsylvania
| | - B Johnson
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,b Department of Kinesiology , Pennsylvania State University , University Park , Pennsylvania
| | - S Slobounov
- a Penn State Center for Sport Concussion , Pennsylvania State University , University Park , Pennsylvania.,b Department of Kinesiology , Pennsylvania State University , University Park , Pennsylvania
| |
Collapse
|
29
|
Wylie GR, Flashman LA. Understanding the interplay between mild traumatic brain injury and cognitive fatigue: models and treatments. Concussion 2017; 2:CNC50. [PMID: 30202591 PMCID: PMC6122693 DOI: 10.2217/cnc-2017-0003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Nearly 2 million traumatic brain injuries occur annually, most of which are mild (mTBI). One debilitating sequela of mTBI is cognitive fatigue: fatigue following cognitive work. Cognitive fatigue has proven difficult to quantify and study, but this is changing, allowing models to be proposed and tested. Here, we review evidence for four models of cognitive fatigue, and relate them to specific treatments following mTBI. The evidence supports two models: cognitive fatigue results from the increased work/effort required for the brain to process information after trauma-induced damage; and cognitive fatigue results from sleep disturbances. While there are no evidence-based treatments for fatigue after mTBI, some pharmacological and nonpharmacological treatments show promise for treating this debilitating problem. Future work may target the role of genetics, neuroinflammation and the microbiome and their role in complex cognitive responses such as fatigue.
Collapse
Affiliation(s)
- Glenn R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
- Department of Physical Medicine & Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
- The Department of Veterans’ Affairs, The War Related Illness & Injury Center, New Jersey Healthcare System, East Orange Campus, East Orange, NJ 07018, USA
| | - Laura A Flashman
- Dartmouth Hitchcock Medical Center, Dartmouth College, Geisel School of Medicine, Lebanon, NH 03756, USA
| |
Collapse
|
30
|
Dretsch MN, Lange RT, Katz JS, Goodman A, Daniel TA, Deshpande G, Denney TS, Iverson GL, Robinson JL. Examining Microstructural White Matter in Active Duty Soldiers with a History of Mild Traumatic Brain Injury and Traumatic Stress. Open Neuroimag J 2017; 11:46-57. [PMID: 28979609 PMCID: PMC5611700 DOI: 10.2174/1874440001711010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
Background: There is a high comorbidity of posttraumatic stress (PTS) and mild traumatic brain injury (mTBI), with largely overlapping symptomatology, in military service members. Objective: To examine white matter integrity associated with PTS and mTBI as assessed using diffusion tensor imaging (DTI). Method: Seventy-four active-duty U.S. soldiers with PTS (n = 16) and PTS with co-morbid history of mTBI (PTS/mTBI; n = 28) were compared to a military control group (n = 30). Participants received a battery of neurocognitive and clinical symptom measures. The number of abnormal DTI values was determined (>2 SDs from the mean of the control group) for fractional anisotropy (FA) and mean diffusivity (MD), and then compared between groups. In addition, mean DTI values from white matter tracts falling into three categories were compared between groups: (i) projection tracts: superior, middle, and inferior cerebellar peduncles, pontine crossing tract, and corticospinal tract; (ii) association tracts: superior longitudinal fasciculus; and (iii) commissure tracts: cingulum bundle (cingulum-cingulate gyrus and cingulum-hippocampus), and corpus callosum. Results: The comorbid PTS/mTBI group had significantly greater traumatic stress, depression, anxiety, and post-concussive symptoms, and they performed worse on neurocognitive testing than those with PTS alone and controls. The groups differed greatly on several clinical variables, but contrary to what we hypothesized, they did not differ greatly on primary and exploratory analytic approaches of hetero-spatial whole brain DTI analyses. Conclusion: The findings suggest that psychological health conditions rather than pathoanatomical changes may be contributing to symptom presentation in this population.
Collapse
Affiliation(s)
- Michael N Dretsch
- US Army Aeromedical Research Laboratory, Fort Rucker, AL; Human Dimension Division, Headquarters Training and Doctrine Command, 950 Jefferson Ave, Fort Eustis, VA, 23612, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Palmer Road, Bethesda, MD, 20814, USA
| | - Jeffery S Katz
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA.,Auburn University MRI Research Center, Department of Electrical & Computer Engineering, 570 Devall Drive, Auburn University, Auburn, AL, 36832, USA.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Adam Goodman
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA
| | - Thomas A Daniel
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA
| | - Gopikrishna Deshpande
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA.,Auburn University MRI Research Center, Department of Electrical & Computer Engineering, 570 Devall Drive, Auburn University, Auburn, AL, 36832, USA.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Thomas S Denney
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA.,Auburn University MRI Research Center, Department of Electrical & Computer Engineering, 570 Devall Drive, Auburn University, Auburn, AL, 36832, USA.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, 300 First Avenue, Harvard Medical School, Boston, MA 02129; & Home Base, A Red Sox Foundation and Massachusetts General Hospital Program; and Defense and Veterans Brain Injury Center, Bethesda, MD, USA
| | - Jennifer L Robinson
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL, 36849, USA.,Auburn University MRI Research Center, Department of Electrical & Computer Engineering, 570 Devall Drive, Auburn University, Auburn, AL, 36832, USA.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| |
Collapse
|
31
|
Vascak M, Sun J, Baer M, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss. Front Cell Neurosci 2017. [PMID: 28634442 PMCID: PMC5459898 DOI: 10.3389/fncel.2017.00157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Jianli Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Matthew Baer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of MedicineRichmond, VA, United States
| |
Collapse
|
32
|
Dikmen S, Machamer J, Temkin N. Mild Traumatic Brain Injury: Longitudinal Study of Cognition, Functional Status, and Post-Traumatic Symptoms. J Neurotrauma 2016; 34:1524-1530. [PMID: 27785968 DOI: 10.1089/neu.2016.4618] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
More than 75% of traumatic brain injuries (TBIs) seeking medical attention are mild, and outcome in that group is heterogeneous. Until sensitive and valid biomarkers are identified, methods are needed to classify mild TBI into more homogeneous subgroups. Four hundred twenty-one adults with mild TBI were divided into groups based on Glasgow Coma Scale (GCS) 13-15 without computed tomography (CT) abnormalities, GCS 15 with CT abnormalities, and GCS 13-14 with CT abnormalities, and were compared with 120 trauma controls on 1-month and 1-year outcomes. At 1 month post-injury, almost all neuropsychological variables differed significantly among the groups. Compared with trauma controls, the GCS 13-15 CT normal group showed no significant differences on any neuropsychological measure or Glasgow Outcome Scale (GOS). The GCS 15 CT abnormal group performed significantly worse on only a measure of episodic memory and learning (Selective Reminding Recall [SRCL]) and GOS, and the GCS 13-14 CT abnormal group performed significantly worse on most neuropsychological measures and GOS. At 1 year post-injury, except for an isolated difficulty on SRCL in the GCS 13-14 CT abnormal group, no differences were observed on any neuropsychological measures nor on GOS. Mean percent of total post-traumatic symptoms endorsed as new or worse and percent endorsing three or more symptoms differed significantly (p < 0.001), with each TBI subgroup reporting significantly more symptoms than the trauma controls at both 1 month and 1 year. In conclusion, this subgrouping improves granularity within mild TBI. While most neuropsychological and functional differences abate by 1 year, reporting three or more post-traumatic symptoms remain for about half of individuals.
Collapse
Affiliation(s)
- Sureyya Dikmen
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 Department of Psychiatry and Behavioral Sciences, University of Washington , Seattle, Washington.,3 Department of Neurological Surgery, University of Washington , Seattle, Washington
| | - Joan Machamer
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington
| | - Nancy Temkin
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 Department of Biostatistics, University of Washington , Seattle, Washington
| |
Collapse
|
33
|
Veeramuthu V, Narayanan V, Ramli N, Hernowo A, Waran V, Bondi MW, Delano-Wood L, Ganesan D. Neuropsychological Outcomes in Patients with Complicated Versus Uncomplicated Mild Traumatic Brain Injury: 6-Month Follow-Up. World Neurosurg 2016; 97:416-423. [PMID: 27751922 DOI: 10.1016/j.wneu.2016.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the extent of persistent neuropsychological impairment in patients with complicated mild traumatic brain injury (mTBI) and those with uncomplicated mTBI. METHODS Sixty-one patients with mTBI (Glasgow Coma Scale score 13-15) were recruited prospectively, categorized according to baseline computed tomography findings, and subjected to neuropsychological assessment at initial admission (n = 61) as well as at a 6-month follow-up (n = 30). The paired t test, Cohen's d effect size calculation, and repeated-measures analysis of variance were used to establish the differences between the 2 groups in terms of neuropsychological performance. RESULTS A trend toward poorer neuropsychological performance among the patients with complicated mTBI was observed during admission; however, performance in this group improved over time. In contrast, the uncomplicated mTBI group showed slower recovery, especially in tasks of memory, visuospatial processing, and executive functions, at follow-up. CONCLUSIONS Our findings suggest that despite the broad umbrella designation of mTBI, the current classification schemes of injury severity for mild neurotrauma should be revisited. They also raise questions about the clinical relevance of both traumatic focal lesions and the absence of visible traumatic lesions on brain imaging studies in patients with milder forms of head trauma.
Collapse
Affiliation(s)
- Vigneswaran Veeramuthu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Norlisah Ramli
- Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Hernowo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vicknes Waran
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mark W Bondi
- VA San Diego Healthcare System, San Diego, California, USA; Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, California, USA; Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Dharmendra Ganesan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Brain structure alterations and cognitive impairment following repetitive mild head impact: An in vivo MRI and behavioral study in rat. Behav Brain Res 2016; 340:41-48. [PMID: 27498246 DOI: 10.1016/j.bbr.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common health issue. Several people repeatedly experience head impact milder than that causing concussion. The present study aimed to confirm the effects of such repeated impact on the brain structure and cognitive abilities. Rat models were established by closed skull weight-drop injury. The animals were anesthetized, subjected to single (s)-sham, s-mTBI, repetitive (r)-sham, and r-mTBI, and recovery times were recorded. MRI, including T2-weighted and diffusion tensor imaging (DTI), as well as, neurological severity scores (mNSS) were assessed for the dynamics of the brain structure and neurological function. Morris water maze (MWM) was used to evaluate the cognitive function. The histological examination of r-mTBI rats revealed the basis of structural changes in the brain. There was no significant difference in the recovery time, MRI, mNSS, and MWM between the s-sham and the s-mTBI groups. Compared with r-sham, r-mTBI induced significant differences in the following aspects. The recovery time was prolonged and beam balance test (BBT) in mNSS increased from day 5. MWM performances were worse even after the BBT was recovered. The volumes of the cortex (CT), hippocampus (HP), and lateral ventricle had changed from day 5, which reached a maximum at day 14. Abnormal DTI parameters were observed in CT, corpus callosum, and HP. Histological analyses showed that both in CT and HP, neuron counts reduced at the end of the experiment. Altogether, these findings indicate that non-symptomatic head injury may result in brain atrophy and cognitive impairment when occurred repeatedly.
Collapse
|
35
|
Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Jäncke L, Hänggi J. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury. Front Hum Neurosci 2016; 10:127. [PMID: 27065831 PMCID: PMC4809899 DOI: 10.3389/fnhum.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 02/01/2023] Open
Abstract
Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork suggests that mTBI can be conceptualized as a dysconnection syndrome. It remains unclear whether reduced WM integrity is the trigger for changes in cortical surface area or whether tissue deformations are the direct result of mechanical forces acting on the brain. The findings suggest that rapid identification of high-risk patients with the use of clinical scales should be assessed acutely as part of the mTBI protocol.
Collapse
Affiliation(s)
- Patrizia Dall'Acqua
- Bellikon Rehabilitation ClinicBellikon, Switzerland; Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| | | | - Ladislav Mica
- Division of Trauma Surgery, University Hospital Zurich Zurich, Switzerland
| | - Hans-Peter Simmen
- Division of Trauma Surgery, University Hospital Zurich Zurich, Switzerland
| | - Richard Glaab
- Department of Traumatology, Cantonal Hospital Aarau Aarau, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Cantonal Hospital Aarau Aarau, Switzerland
| | - Markus Schwendinger
- Interdisciplinary Emergency Centre, Baden Cantonal Hospital Baden, Switzerland
| | - Christoph Meier
- Department of Surgery, Waid Hospital Zurich Zurich, Switzerland
| | - Erika J Ulbrich
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich Zurich, Switzerland
| | | | - Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland; International Normal Aging and Plasticity Imaging Center, University of ZurichZurich, Switzerland; Center for Integrative Human Physiology, University of ZurichZurich, Switzerland; University Research Priority Program, Dynamic of Healthy Aging, University of ZurichZurich, Switzerland
| | - Jürgen Hänggi
- Division Neuropsychology, Department of Psychology, University of Zurich Zurich, Switzerland
| |
Collapse
|
36
|
Abstract
OBJECTIVES Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition. METHODS We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury. RESULTS The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes. CONCLUSIONS TBI has a negative impact on distributed brain networks that lead to behavioral disturbance.
Collapse
|
37
|
Fischer TD, Red SD, Chuang AZ, Jones EB, McCarthy JJ, Patel SS, Sereno AB. Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task. J Neurotrauma 2015; 33:1237-46. [PMID: 26398492 DOI: 10.1089/neu.2015.3990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.
Collapse
Affiliation(s)
- Tara D Fischer
- 1 Department of Neurobiology and Anatomy, the University of Texas Health Science Center at Houston , Houston, Texas
| | - Stuart D Red
- 1 Department of Neurobiology and Anatomy, the University of Texas Health Science Center at Houston , Houston, Texas
| | - Alice Z Chuang
- 2 Department of Ophthalmology and Visual Science, the University of Texas Health Science Center at Houston , Houston, Texas
| | - Elizabeth B Jones
- 3 Department of Emergency Medicine, the University of Texas Health Science Center at Houston , Houston, Texas
| | - James J McCarthy
- 3 Department of Emergency Medicine, the University of Texas Health Science Center at Houston , Houston, Texas
| | - Saumil S Patel
- 4 Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Anne B Sereno
- 1 Department of Neurobiology and Anatomy, the University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
38
|
Tackling the Challenges of Clinical Trials for Severe Traumatic Brain Injury in Children: Screening, Phenotyping, and Adapting. Crit Care Med 2015; 43:1544-6. [PMID: 26079237 DOI: 10.1097/ccm.0000000000001041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Mathias JL, Wheaton P. Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neurosci Biobehav Rev 2015; 55:573-93. [PMID: 26054792 DOI: 10.1016/j.neubiorev.2015.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Jane L Mathias
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia.
| | - Patricia Wheaton
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Panenka WJ, Lange RT, Bouix S, Shewchuk JR, Heran MKS, Brubacher JR, Eckbo R, Shenton ME, Iverson GL. Neuropsychological outcome and diffusion tensor imaging in complicated versus uncomplicated mild traumatic brain injury. PLoS One 2015; 10:e0122746. [PMID: 25915776 PMCID: PMC4411162 DOI: 10.1371/journal.pone.0122746] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Abstract
This study examined whether intracranial neuroimaging abnormalities in those with mild traumatic brain injury (MTBI) (i.e., “complicated” MTBIs) are associated with worse subacute outcomes as measured by cognitive testing, symptom ratings, and/or diffusion tensor imaging (DTI). We hypothesized that (i) as a group, participants with complicated MTBIs would report greater symptoms and have worse neurocognitive outcomes than those with uncomplicated MTBI, and (ii) as a group, participants with complicated MTBIs would show more Diffusion Tensor Imaging (DTI) abnormalities. Participants were 62 adults with MTBIs (31 complicated and 31 uncomplicated) who completed neurocognitive testing, symptom ratings, and DTI on a 3T MRI scanner approximately 6-8 weeks post injury. There were no statistically significant differences between groups on symptom ratings or on a broad range of neuropsychological tests. When comparing the groups using tract-based spatial statistics for DTI, no significant difference was found for axial diffusivity or mean diffusivity. However, several brain regions demonstrated increased radial diffusivity (purported to measure myelin integrity), and decreased fractional anisotropy in the complicated group compared with the uncomplicated group. Finally, when we extended the DTI analysis, using a multivariate atlas based approach, to 32 orthopedic trauma controls (TC), the findings did not reveal significantly more areas of abnormal DTI signal in the complicated vs. uncomplicated groups, although both MTBI groups had a greater number of areas with increased radial diffusivity compared with the trauma controls. This study illustrates that macrostructural neuroimaging changes following MTBI are associated with measurable changes in DTI signal. Of note, however, the division of MTBI into complicated and uncomplicated subtypes did not predict worse clinical outcome at 6-8 weeks post injury.
Collapse
Affiliation(s)
- William J. Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Rael T. Lange
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason R. Shewchuk
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Manraj K. S. Heran
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Jeffrey R. Brubacher
- Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan Eckbo
- Psychiatry Neuroimaging Laboratory, Brigham Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Brigham Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- VA Boston Healthcare System, Brockton, Massachusetts, United States of America
| | - Grant L. Iverson
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, & Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Dodd AB, Epstein K, Ling JM, Mayer AR. Diffusion tensor imaging findings in semi-acute mild traumatic brain injury. J Neurotrauma 2015; 31:1235-48. [PMID: 24779720 DOI: 10.1089/neu.2014.3337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 10 years have seen a rapid increase in the use of diffusion tensor imaging to identify biomarkers of traumatic brain injury (TBI). Although the literature generally indicates decreased anisotropic diffusion at more chronic injury periods and in more severe injuries, considerable debate remains regarding the direction (i.e., increased or decreased) of anisotropic diffusion in the acute to semi-acute phase (here defined as less than 3 months post-injury) of mild TBI (mTBI). A systematic review of the literature was therefore performed to (1) determine the prevalence of different anisotropic diffusion findings (increased, decreased, bidirectional, or null) during the semi-acute injury phase of mTBI and to (2) identify clinical (e.g., age of injury, post-injury scan time, etc.) and experimental factors (e.g., number of unique directions, field strength) that may influence these findings. Results from the literature review indicated 31 articles with independent samples of semi-acute mTBI patients, with 13 studies reporting decreased anisotropic diffusion, 11 reporting increased diffusion, 2 reporting bidirectional findings, and 5 reporting null findings. Chi-squared analyses indicated that the total number of diffusion-weighted (DW) images was significantly associated with findings of either increased (DW ≥ 30) versus decreased (DW ≤ 25) anisotropic diffusion. Other clinical and experimental factors were not statistically significant for direction of anisotropic diffusion, but these results may have been limited by the relatively small number of studies within each domain (e.g., pediatric studies). In summary, current results indicate roughly equivalent number of studies reporting increased versus decreased anisotropic diffusion during semi-acute mTBI, with the number of unique diffusion images being statistically associated with the direction of findings.
Collapse
Affiliation(s)
- Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | |
Collapse
|
42
|
Wäljas M, Iverson GL, Lange RT, Hakulinen U, Dastidar P, Huhtala H, Liimatainen S, Hartikainen K, Öhman J. A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. J Neurotrauma 2015; 32:534-47. [PMID: 25363626 DOI: 10.1089/neu.2014.3339] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined multiple biopsychosocial factors relating to post-concussion symptom (PCS) reporting in patients with mild traumatic brain injuries (mTBI), including structural (computed tomography and magnetic resonance imaging [MRI]) and microstructural neuroimaging (diffusion tensor imaging [DTI]). Patients with mTBIs completed several questionnaires and cognitive testing at approximately one month (n=126) and one year (n=103) post-injury. At approximately three weeks post-injury, DTI was undertaken using a Siemens 3T scanner in a subgroup (n=71). Measures of fractional anisotropy were calculated for 16 regions of interest (ROIs) and measures of apparent diffusion coefficient were calculated for 10 ROIs. Patients were compared with healthy control subjects. Using International Classification of Diseases, Tenth Revision (ICD-10) PCS criteria and mild or greater symptom reporting, 59% of the mTBI sample met criteria at one month and 38% met criteria at one year. However, 31% of the healthy control sample also met criteria for the syndrome-illustrating a high false-positive rate. Significant predictors of ICD-10 PCS at one month were pre-injury mental health problems and the presence of extra-cranial bodily injuries. Being symptomatic at one month was a significant predictor of being symptomatic at one year, and depression was significantly related to PCS at both one month and one year. Intracranial abnormalities visible on MRI were present in 12.1% of this sample, and multifocal areas of unusual white matter as measured by DTI were present in 50.7% (compared with 12.4% of controls). Structural MRI abnormalities and microstructural white matter findings were not significantly associated with greater post-concussion symptom reporting. The personal experience and reporting of post-concussion symptoms is likely individualized, representing the cumulative effect of multiple variables, such as genetics, mental health history, current life stress, medical problems, chronic pain, depression, personality factors, and other psychosocial and environmental factors. The extent to which damage to the structure of the brain contributes to the persistence of post-concussion symptoms remains unclear.
Collapse
Affiliation(s)
- Minna Wäljas
- 1 Department of Neurosciences and Rehabilitation, Tampere University Hospital , Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lange RT, Panenka WJ, Shewchuk JR, Heran MKS, Brubacher JR, Bioux S, Eckbo R, Shenton ME, Iverson GL. Diffusion tensor imaging findings and postconcussion symptom reporting six weeks following mild traumatic brain injury. Arch Clin Neuropsychol 2014; 30:7-25. [PMID: 25416729 DOI: 10.1093/arclin/acu060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study is to examine the relation between the microstructural architecture of white matter, as measured by diffusion tensor imaging (DTI), and postconcussion symptom reporting 6-8 weeks following mild traumatic brain injury (MTBI). Participants were 108 patients prospectively recruited from a Level 1 Trauma Center (Vancouver, BC, Canada) following an orthopedic injury [i.e., 36 trauma controls (TCs)] or MTBI (n = 72). DTI of the whole brain was undertaken using a Phillips 3T scanner at 6-8 weeks postinjury. Participants also completed a 5 h neurocognitive test battery and a brief battery of self-report measures (e.g., depression, anxiety, and postconcussion symptoms). The MTBI sample was divided into two groups based on ICD-10 criteria for postconcussional syndrome (PCS): first, PCS-present (n = 20) and second, PCS-absent (n = 52). There were no significant differences across the three groups (i.e., TC, PCS-present, and PCS-absent) for any of the neurocognitive measures (p = .138-.810). For the self-report measures, the PCS-present group reported significantly more anxiety and depression symptoms compared with the PCS-absent and TC groups (p < .001, d = 1.63-1.89, very large effect sizes). For the DTI measures, there were no significant differences in fractional anisotropy, axial diffusivity, radial diffusivity, or mean diffusivity when comparing the PCS-present and PCS-absent groups. However, there were significant differences (p < .05) in MD and RD when comparing the PCS-present and TC groups. There were significant differences in white matter between TC subjects and the PCS-present MTBI group, but not the PCS-absent MTBI group. Within the MTBI group, white-matter changes were not a significant predictor of ICD-10 PCS.
Collapse
Affiliation(s)
- Rael T Lange
- Defense and Veterans Brain Injury Center, Bethesda, MD, USA Walter Reed National Military Medical Center, Bethesda, MD, USA University of British Columbia, Vancouver, BC, Canada
| | | | - Jason R Shewchuk
- University of British Columbia, Vancouver, BC, Canada Vancouver General Hospital, Vancouver, BC, Canada
| | - Manraj K S Heran
- University of British Columbia, Vancouver, BC, Canada Vancouver General Hospital, Vancouver, BC, Canada
| | - Jeffrey R Brubacher
- University of British Columbia, Vancouver, BC, Canada Vancouver General Hospital, Vancouver, BC, Canada
| | - Sylvain Bioux
- Brigham Women's Hospital, MA, USA Harvard Medical School, Boston, MA, USA
| | - Ryan Eckbo
- Brigham Women's Hospital, MA, USA Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Brigham Women's Hospital, MA, USA Harvard Medical School, Boston, MA, USA VA Boston Healthcare System, Brockton, MA, USA
| | - Grant L Iverson
- Defense and Veterans Brain Injury Center, Bethesda, MD, USA University of British Columbia, Vancouver, BC, Canada Harvard Medical School, Boston, MA, USA Spaulding Rehabilitation Hospital, Charlestown, MA, USA Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston, MA, USA
| |
Collapse
|
44
|
Osborn A, Mathias J, Fairweather-Schmidt A. Depression following adult, non-penetrating traumatic brain injury: A meta-analysis examining methodological variables and sample characteristics. Neurosci Biobehav Rev 2014; 47:1-15. [DOI: 10.1016/j.neubiorev.2014.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 11/25/2022]
|