1
|
Yang C, He T, Ma J, Wang Q, Wang S, Wang G, Yang J, Chen Z, Li Q, Zhan F, Jian C, Feng D, Quan Z. Duraplasty promotes functional recovery by alleviating intraspinal pressure and edema following severe spinal cord compression injury in rabbits: Experimental studies. Spine J 2024:S1529-9430(24)01197-5. [PMID: 39681280 DOI: 10.1016/j.spinee.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND After acute traumatic spinal cord injury (tSCI), various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) and secondary injury. PURPOSE Our study aimed to investigate the impacts of duraplasty and laminectomy on edema progression, perfusion and functional outcomes after severe balloon compression SCI. STUDY DESIGN In vivo animal study. METHODS Closed balloon compression injuries were induced at the T7 level in rabbits using an inflated volume of 50 μl. Laminectomy (1-level laminectomy: 1-laminectomy; 3-level laminectomy: 3-laminectomy) and duraplasty were performed immediately after model generation. ISP was monitored using a SOPHYSA probe at the epicenter within 7 days post-SCI. Edema progression, perfusion and damage severity were evaluated by serial multisequence MRI scans, behavioral and bladder scores within 8 weeks post-SCI. Blood-spinal cord barrier (BSCB) permeability and histopathology were subsequently analyzed. RESULTS After SCI, ISP was steeply elevated in the control and 1-laminectomy groups, peaking at 33.14±4.91 and 31.71±4.50 mmHg at 48 h post-SCI; whereas in the 3-laminectomy and duraplasty groups, ISP peaked at 29.43±4.04 and 12.14±1.86 mmHg (p<0.0001) at 72 h post-SCI. MRI and function scores showed that duraplasty significantly reduced the intramedullary lesion length (IMLL) and blood flow reduction ratio, and promoted fiber tract sparing and spinal cord functional recovery (p<0.01). Histopathology revealed that duraplasty significantly reduced BSCB permeability, tissue loss and inflammation and promoted axon preservation (p<0.01), while it did not increase early scar formation. CONCLUSIONS Duraplasty may alleviate secondary SCI and promote functional recovery. This neuroprotective mechanism may be related to reduced ISP and increased perfusion, resulting in reduced edema, BSCB permeability and inflammation and increased nerve fiber tract preservation. CLINICAL SIGNIFICANCE Duraplasty may promote functional recovery following severe tSCI patients, but further investigations are needed.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;; Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;; Orthopedic laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Tao He
- Department of orthopaedic trauma, Chongqing General Hospital, Chongqing University, No.118 Xingguang Avenue, Liangjiang New District, Chongqing 401120, China.
| | - Jingjin Ma
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Qing Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Song Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Gaoju Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Jin Yang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Zhiyu Chen
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Qiaochu Li
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Fangbiao Zhan
- Department of orthopaedics, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404100, China.
| | - Changchun Jian
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Daxiong Feng
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Zhengxue Quan
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;; Orthopedic laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
2
|
Betsholtz C, Engelhardt B, Koh GY, McDonald DM, Proulx ST, Siegenthaler J. Advances and controversies in meningeal biology. Nat Neurosci 2024; 27:2056-2072. [PMID: 39333784 DOI: 10.1038/s41593-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/12/2024] [Indexed: 09/30/2024]
Abstract
The dura, arachnoid and pia mater, as the constituent layers of the meninges, along with cerebrospinal fluid in the subarachnoid space and ventricles, are essential protectors of the brain and spinal cord. Complemented by immune cells, blood vessels, lymphatic vessels and nerves, these connective tissue layers have held many secrets that have only recently begun to be revealed. Each meningeal layer is now known to have molecularly distinct types of fibroblasts. Cerebrospinal fluid clearance through peripheral lymphatics and lymph nodes is well documented, but its routes and flow dynamics are debated. Advances made in meningeal immune functions are also debated. This Review considers the cellular and molecular structure and function of the dura, arachnoid and pia mater in the context of conventional views, recent progress, and what is uncertain or unknown. The hallmarks of meningeal pathophysiology are identified toward developing a more complete understanding of the meninges in health and disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden and Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | | | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science and Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julie Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, Colorado, CO, USA.
| |
Collapse
|
3
|
Saadoun S, Asif H, Papadopoulos MC. The concepts of Intra Spinal Pressure (ISP), Intra Thecal Pressure (ITP), and Spinal Cord Perfusion Pressure (SCPP) in acute, severe traumatic spinal cord injury: Narrative review. BRAIN & SPINE 2024; 4:103919. [PMID: 39654909 PMCID: PMC11626061 DOI: 10.1016/j.bas.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
There is increasing interest in monitoring pressure from the injured spinal cord to guide the management of patients with acute, severe traumatic spinal cord injuries (TSCI). This is analogous to monitoring intracranial pressure and cerebral perfusion pressure in traumatic brain injury (TBI). Here, we explore key concepts in this field and novel therapies that are emerging from these ideas. We argue that the Monro-Kellie doctrine, a fundamental principle in TBI, may also apply to TSCI as follows: The injured cord swells, initially displacing surrounding cerebrospinal fluid (CSF) that prevents a rise in spinal cord pressure; once the CSF space is exhausted, the spinal cord pressure at the injury site rises. The spinal Monro-Kellie doctrine allows us to define novel concepts to guide the management of TSCI based on principles employed in the management of TBI such as intraspinal pressure (ISP), intrathecal pressure (ITP), spinal cord perfusion pressure (SCPP), spinal pressure reactivity index (sPRx), and optimum SCPP (SCPPopt). Draining lumbar CSF and expansion duroplasty are currently undergoing clinical trials as novel therapies for TSCI. We conclude that there is acknowledgement that blood pressure targets applied to all TSCI patients are inadequate. Current research aims to develop individualised management based on ISP/ITP and SCPP monitoring. These techniques are experimental. A key controversy is whether the spinal cord pressure is best measured from the injury site (ISP) or from the lumbar cerebrospinal fluid (ITP).
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Hasan Asif
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C. Papadopoulos
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
4
|
Harmon JN, Hyde JE, Jensen DE, D'cessare EC, Odarenko AA, Bruce MF, Khaing ZZ. Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging. Exp Neurol 2024; 374:114681. [PMID: 38199511 PMCID: PMC10922898 DOI: 10.1016/j.expneurol.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Dylan E Jensen
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Emma C D'cessare
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Anton A Odarenko
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
5
|
Jin C, Wang K, Ren Y, Li Y, Wang Z, Cheng L, Xie N. Role of durotomy on function outcome, tissue sparing, inflammation, and tissue stiffness after spinal cord injury in rats. MedComm (Beijing) 2024; 5:e530. [PMID: 38576458 PMCID: PMC10993870 DOI: 10.1002/mco2.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
Currently, there is a lack of effective treatments for spinal cord injury (SCI), a debilitating medical condition associated with enduring paralysis and irreversible neuronal damage. Extradural decompression of osseous as well as soft tissue components has historically been the principal objective of surgical procedures. Nevertheless, this particular surgical procedure fails to tackle the intradural compressive alterations that contribute to secondary SCI. Here, we propose an early intrathecal decompression strategy and evaluate its role on function outcome, tissue sparing, inflammation, and tissue stiffness after SCI. Durotomy surgery significantly promoted recovery of hindlimb locomotor function in an open-field test. Radiological analysis suggested that lesion size and tissue edema were significantly reduced in animals that received durotomy. Relative to the group with laminectomy alone, the animals treated with a durotomy had decreased cavitation, scar formation, and inflammatory responses at 4 weeks after SCI. An examination of the mechanical properties revealed that durotomy facilitated an expeditious restoration of the injured tissue's elastic rigidity. In general, early decompressive durotomy could serve as a significant strategy to mitigate the impairments caused by secondary injury and establish a more conducive microenvironment for prospective cellular or biomaterial transplantation.
Collapse
Affiliation(s)
- Chen Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of OrthopedicsTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Kaiwei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of OrthopedicsShanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Zhanwei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopaedic Department of Tongji HospitalSchool of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
6
|
Jeffery ND, Rossmeisl JH, Harcourt-Brown TR, Granger N, Ito D, Foss K, Chase D. Randomized Controlled Trial of Durotomy as an Adjunct to Routine Decompressive Surgery for Dogs With Severe Acute Spinal Cord Injury. Neurotrauma Rep 2024; 5:128-138. [PMID: 38414780 PMCID: PMC10898236 DOI: 10.1089/neur.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Although many interventions for acute spinal cord injury (SCI) appear promising in experimental models, translation directly from experimental animals to human patients is a large step that can be problematic. Acute SCI occurs frequently in companion dogs and may provide a model to ease translation. Recently, incision of the dura has been highlighted in both research animals and human patients as a means of reducing intraspinal pressure, with a view to improving perfusion of the injured tissue and enhancing functional recovery. Observational clinical data in humans and dogs support the notion that it may also improve functional outcome. Here, we report the results of a multi-center randomized controlled trial of durotomy as an adjunct to traditional decompressive surgery for treatment of severe thoracolumbar SCI caused by acute intervertebral disc herniation in dogs. Sample-size calculation was based on the proportion of dogs recovering ambulation improving from an expected 55% in the traditional surgery group to 70% in the durotomy group. Over a 3.5-year period, we enrolled 140 dogs, of which 128 had appropriate duration of follow-up. Overall, 65 (51%) dogs recovered ambulation. Recovery in the traditional decompression group was 35 of 62 (56%) dogs, and in the durotomy group 30 of 66 (45%) dogs, associated with an odds ratio of 0.643 (95% confidence interval: 0.320-1.292) and z-score of -1.24. This z-score indicates trial futility to reach the target 15% improvement over traditional surgery, and the trial was terminated at this stage. We conclude that durotomy is ineffective in improving functional outcome for severe acute thoracolumbar SCI in dogs. In the future, these data can be compared with similar data from clinical trials on duraplasty in human patients and will aid in determining the predictive validity of the "companion dog model" of acute SCI.
Collapse
Affiliation(s)
- Nick D. Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
| | | | | | - Daisuke Ito
- Nihon University College of Bioresource Sciences Department of Veterinary Medicine, Fujisawa, Japan
| | - Kari Foss
- Department of Veterinary Clinical Medicine, University of Illinois Urbana–Champaign, Champaign, Illinois, USA
| | - Damian Chase
- Veterinary Specialists Aotearora, Auckland, New Zealand
| |
Collapse
|
7
|
Zhu YK, Lu FT, Zhang GD, Liu ZP. A Review of Strategies Associated with Surgical Decompression in Traumatic Spinal Cord Injury. J Neurol Surg A Cent Eur Neurosurg 2023; 84:570-577. [PMID: 35354217 DOI: 10.1055/a-1811-8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Traumatic spinal cord injury (TSCI) is frequent. Timely diagnosis and treatment have reduced the mortality, but the long-term recovery of neurologic functions remains ominous. After TSCI, tissue bleeding, edema, and adhesions lead to an increase in the intraspinal pressure, further causing the pathophysiologic processes of ischemia and hypoxia and eventually accelerating the cascade of secondary spinal cord injury. Timely surgery with appropriate decompression strategies can reduce that secondary injury. However, disagreement about the safety and effectiveness of decompression surgery and the timing of surgery still exists. The level and severity of spinal cord injury do have an impact on the timing of surgery; therefore, TSCI subpopulations may benefit from early surgery. Early surgery perhaps has little effect on recovery from complete TSCI but might be of benefit in patients with incomplete injury. Early decompression should be considered in patients with incomplete cervical TSCI. Patient age should not be used as an exclusion criterion for early surgery. The best time point for early surgery is although influenced by the shortest duration to thoroughly examine the patient's condition and stabilize the patient's state. After the patient's condition is fully evaluated, we can perform the surgical modality of emergency myelotomy and decompression. Therefore, a number of conditions should be considered, such as standardized decompression methods, indications and operation timing to ensure the effectiveness and safety of early surgical intervention, and promotion of the functional recovery of residual nerve tissue.
Collapse
Affiliation(s)
- Ying-Kang Zhu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Fa-Tai Lu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Guo-Dong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Zun-Peng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Prasse T, Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Bredow J, Hofstetter CP. A decrease in the neuroprotective effects of acute spinal cord decompression according to injury severity: introducing the concept of a ceiling effect. J Neurosurg Spine 2023; 38:299-306. [PMID: 36401546 DOI: 10.3171/2022.6.spine22383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Acute traumatic spinal cord injury (tSCI) is followed by a prolonged period of secondary neuroglial cell death. Neuroprotective interventions, such as surgical spinal cord decompression, aim to mitigate secondary injury. In this study, the authors explore whether the effect size of posttraumatic neuroprotective spinal cord decompression varies with injury severity. METHODS Seventy-one adult female Long Evans rats were subjected to a thoracic tSCI using a third-generation spinal contusion device. Moderate and severe tSCI were defined by recorded impact force delivered to the spinal cord. Immediately after injury (< 15 minutes), treatment cohorts underwent either a decompressive durotomy or myelotomy. Functional recovery was documented using the Basso, Beattie, and Bresnahan locomotor scale, and tissue sparing was documented using histological analysis. RESULTS Moderate and severe injuries were separated at a cutoff point of 231.8 kdyn peak impact force based on locomotor recovery at 8 weeks after injury. Durotomy improved hindlimb locomotor recovery 8 weeks after moderate trauma (p < 0.01), but not after severe trauma (p > 0.05). Myelotomy led to increased tissue sparing (p < 0.0001) and a significantly higher number of spared motor neurons (p < 0.05) in moderate trauma, but no such effect was noted in severely injured rats (p > 0.05). Within the moderate injury group, myelotomy also resulted in significantly more spared tissue when compared with durotomy-only animals (p < 0.01). CONCLUSIONS These results suggest that the neuroprotective effects of surgical spinal cord decompression decrease with increasing injury severity in a rodent tSCI model.
Collapse
Affiliation(s)
- Tobias Prasse
- 1Department of Neurological Surgery, University of Washington, Seattle, Washington
- 2Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne; and
| | - Zin Z Khaing
- 1Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Lindsay N Cates
- 1Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Dane M Dewees
- 1Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jeffrey E Hyde
- 1Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jan Bredow
- 3Department of Orthopedics and Trauma Surgery, Krankenhaus Porz am Rhein, University of Cologne, Germany
| | | |
Collapse
|
10
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Harmon JS, Khaing ZZ, Hyde JE, Hofstetter CP, Tremblay-Darveau C, Bruce MF. Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy. Sci Rep 2022; 12:21943. [PMID: 36536012 PMCID: PMC9763240 DOI: 10.1038/s41598-022-24986-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrasound localization microscopy (ULM) is a recent advancement in ultrasound imaging that uses microbubble contrast agents to yield vascular images that break the classical diffraction limit on spatial resolution. Current approaches cannot image blood flow at the tissue perfusion level since they rely solely on differences in velocity to separate tissue and microbubble signals; lower velocity microbubble echoes are removed during high pass wall filtering. To visualize blood flow in the entire vascular tree, we have developed nonlinear ULM, which combines nonlinear pulsing sequences with plane-wave imaging to segment microbubble signals independent of their velocity. Bubble localization and inter-frame tracking produces super-resolved images and, with parameters derived from the bubble tracks, a rich quantitative feature set that can describe the relative quality of microcirculatory flow. Using the rat spinal cord as a model system, we showed that nonlinear ULM better resolves some smaller branching vasculature compared to conventional ULM. Following contusion injury, both gold-standard histological techniques and nonlinear ULM depicted reduced in-plane vessel length between the penumbra and contralateral gray matter (-16.7% vs. -20.5%, respectively). Here, we demonstrate that nonlinear ULM uniquely enables investigation and potential quantification of tissue perfusion, arguably the most important component of blood flow.
Collapse
Affiliation(s)
- Jonah S. Harmon
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Zin Z. Khaing
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Jeffrey E. Hyde
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Christoph P. Hofstetter
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | | | - Matthew F. Bruce
- grid.34477.330000000122986657Applied Physics Laboratory, University of Washington, Seattle, WA 98105 USA
| |
Collapse
|
12
|
Gee CM, Kwon BK. Significance of spinal cord perfusion pressure following spinal cord injury: A systematic scoping review. J Clin Orthop Trauma 2022; 34:102024. [PMID: 36147378 PMCID: PMC9486559 DOI: 10.1016/j.jcot.2022.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
This scoping review systematically reviewed relevant research to summarize the literature addressing the significance of monitoring spinal cord perfusion pressure (SCPP) in acute traumatic spinal cord injury (SCI). The objectives of the review were to (1) examine the nature of research in the field of SCPP monitoring in SCI, (2) summarize the key research findings in the field, and (3) identify research gaps in the existing literature and future research priorities. Primary literature searches were conducted using databases (Medline and Embase) and expanded searches were conducted by reviewing the references of eligible articles and searches of Scopus, Web of Science core collection, Google Scholar, and conference abstracts. Relevant data were extracted from the studies and synthesis of findings was guided by the identification of patterns across studies to identify key themes and research gaps within the literature. Following primary and expanded searches, a total of 883 articles were screened. Seventy-three articles met the review inclusion criteria, including 34 original research articles. Other articles were categorized as conference abstracts, literature reviews, systematic reviews, letters to the editor, perspective articles, and editorials. Key themes relevant to the research question that emerged from the review included the relationship between SCPP and neurological recovery, the safety of monitoring pressures within the intrathecal space, and methods of intervention to enhance SCPP in the setting of acute traumatic SCI. Original research that aims to enhance SCPP by targeting increases in mean arterial pressure or reducing pressure in the intrathecal space is reviewed. Further discussion regarding where pressure within the intrathecal space should be measured is provided. Finally, we highlight research gaps in the literature such as determining the feasibility of invasive monitoring at smaller centers, the need for a better understanding of cerebrospinal fluid physiology following SCI, and novel pharmacological interventions to enhance SCPP in the setting of acute traumatic SCI. Ultimately, despite a growing body of literature on the significance of SCPP monitoring following SCI, there are still a number of important knowledge gaps that will require further investigation.
Collapse
Affiliation(s)
- Cameron M. Gee
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Canada
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Canada
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Canada
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Canada
| |
Collapse
|
13
|
Yang C, He T, Wang Q, Wang G, Ma J, Chen Z, Li Q, Wang L, Quan Z. Elevated intraspinal pressure drives edema progression after acute compression spinal cord injury in rabbits. Exp Neurol 2022; 357:114206. [PMID: 35988698 DOI: 10.1016/j.expneurol.2022.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Elevated intraspinal pressure (ISP) following traumatic spinal cord injury (tSCI) can be an important factor for secondary SCI that may result in greater tissue damage and functional deficits. Our present study aimed to investigate the dynamic changes in ISP after different degrees of acute compression SCI in rabbits with closed canals and explore its influence on spinal cord pathophysiology. Closed balloon compression injuries were induced with different inflated volumes (40 μl, 50 μl or no inflation) at the T7/8 level in rabbits. ISP was monitored by a SOPHYSA probe at the epicenter within 7 days post-SCI. Edema progression, spinal cord perfusion and damage severity were evaluated by serial multisequence MRI scans, somatosensory evoked potentials (SEPs) and behavioral scores. Histological and blood spinal cord barrier (BSCB) permeability results were subsequently analyzed. The results showed that the ISP waveforms comprised three peaks, significantly increased after tSCI, peaked at 72 h (21.86 ± 3.13 mmHg) in the moderate group or 48 h (31.71 ± 6.02 mmHg) in the severe group and exhibited "slow elevated and fast decreased" or "fast elevated and slow decreased" dynamic changes in both injured groups. Elevated ISP after injury was correlated with spinal cord perfusion and edema progression, leading to secondary lesion enlargement. The secondary damage aggravation can be visualized by diffusion tensor tractography (DTT). Moreover, the BSCB permeability was significantly increased at the epicenter and rostrocaudal segments at 72 h after SCI; by 14 days, notable permeability was still observed at the caudal segment in the severely injured rabbits. Our results suggest that the ISP of rabbits with closed canals increased after acute compression SCI and exhibited different dynamic change patterns in moderately and severely injured rabbits. Elevated ISP exacerbated spinal cord perfusion, drove edema progression and led to secondary lesion enlargement that was strongly associated with BSCB disruption. For severe tSCI, early intervention targeting elevated ISP may be an indispensable choice to rescue spinal cord function.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Tao He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Orthopaedic Trauma, Chongqing General Hospital, No.118 Xingguang Avenue, Liangjiang New District, Chongqing 40114, China
| | - Qing Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China
| | - Gaoju Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China
| | - Jingjin Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Zhiyu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Qiaochu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
14
|
Bruce M, DeWees D, Harmon JN, Cates L, Khaing ZZ, Hofstetter CP. Blood Flow Changes Associated with Spinal Cord Injury Assessed by Non-linear Doppler Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1410-1419. [PMID: 35523621 PMCID: PMC9704544 DOI: 10.1016/j.ultrasmedbio.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 05/23/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is clinically used to image the microcirculation at lower imaging frequencies (<2 MHz). Recently, plane-wave acquisitions and Doppler processing have revealed improved microbubble sensitivity, enabling CEUS use at higher frequencies (15 MHz) and the ability to image simultaneously blood flow in the micro- and macrocirculations. We used this approach to assess acute and chronic blood flow changes within contused spinal cord in a rodent spinal cord injury model. Immediately after spinal cord injury, we found significant differences in perfusion deficit between moderate and severe injuries (1.73 ± 0.1 mm2 vs. 3.2 ± 0.3 mm2, respectively), as well as a delay in microbubble arrival time in tissue adjacent to the injury site (0.97 ± 0.1 s vs. 1.54 ± 0.1 s, respectively). Acutely, morphological changes to central sulcal arteries were observed where vessels rostral to the contusion were displaced 4.8 ± 2.2° and 8.2 ± 3.1° anteriorly, and vessels caudal to the contusion 17.8 ± 3.9° and 24.2 ± 4.1° posteriorly, respectively, for moderate and severe injuries. Significant correlation of the acute perfusion deficit and arrival time were found with the chronic assessment of locomotive function and histological estimate of spared spinal cord tissue.
Collapse
Affiliation(s)
- Matthew Bruce
- Applied Physics Laboratory/Center for Industrial and Medical Ultrasound, University of Washington, Seattle, Washington, USA.
| | - Dane DeWees
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Jennifer N Harmon
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Lindsay Cates
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Zin Z Khaing
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
15
|
Yang CH, Quan ZX, Wang GJ, He T, Chen ZY, Li QC, Yang J, Wang Q. Elevated intraspinal pressure in traumatic spinal cord injury is a promising therapeutic target. Neural Regen Res 2022; 17:1703-1710. [PMID: 35017417 PMCID: PMC8820714 DOI: 10.4103/1673-5374.332203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The currently recommended management for acute traumatic spinal cord injury aims to reduce the incidence of secondary injury and promote functional recovery. Elevated intraspinal pressure (ISP) likely plays an important role in the processes involved in secondary spinal cord injury, and should not be overlooked. However, the factors and detailed time course contributing to elevated ISP and its impact on pathophysiology after traumatic spinal cord injury have not been reviewed in the literature. Here, we review the etiology and progression of elevated ISP, as well as potential therapeutic measures that target elevated ISP. Elevated ISP is a time-dependent process that is mainly caused by hemorrhage, edema, and blood-spinal cord barrier destruction and peaks at 3 days after traumatic spinal cord injury. Duraplasty and hypertonic saline may be promising treatments for reducing ISP within this time window. Other potential treatments such as decompression, spinal cord incision, hemostasis, and methylprednisolone treatment require further validation.
Collapse
Affiliation(s)
- Chao-Hua Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province; Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Xue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gao-Ju Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao-Chu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qing Wang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
16
|
Alshorman J, Wang Y, Huang G, Serebour TB, Guo X. Detection and Analysis of Perfusion Pressure through Measuring Oxygen Saturation and Requirement of Dural Incision Decompression after Laminectomy. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8560668. [PMID: 34912448 PMCID: PMC8668361 DOI: 10.1155/2021/8560668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) can continue and transform long after the time of initial injury. Preventing secondary injury after SCI is one of the most significant challenges, and early intervention to return the blood flow at the injury site can minimize the likelihood of secondary injury. OBJECTIVE The purpose of this study is to investigate whether laminectomy can achieve the spinal cord blood flow by measuring the spinal blood oxygen saturation intraoperatively without the presence of light. METHODS Between June and August 2021, eight patients were admitted after traumatic spinal cord injury for surgical treatment. We explored the effectiveness of laminectomy and whether the patients required further procedures or not. We used a brain oxygen saturation monitor at the spine injury site under dark conditions. RESULTS Eight cervical trauma patients, six males and two females, underwent laminectomy decompression. Three patients' ASIA grade improved by one level, and one patient showed slight motor-sensory improvement. Oxygen saturation was in the normal range. CONCLUSION Performing bony decompression can show good results. Therefore, finding an examination method to confirm the improvement of blood perfusion by measuring oxygen saturation at the injury site after laminectomy is essential to avoid other complications.
Collapse
Affiliation(s)
- Jamal Alshorman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guixiong Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tracy Boakye Serebour
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Alshorman J, Wang Y, Zhu F, Zeng L, Chen K, Yao S, Jing X, Qu Y, Sun T, Guo X. Medical Communication Services after Traumatic Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4798927. [PMID: 34512936 PMCID: PMC8424255 DOI: 10.1155/2021/4798927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
It is difficult to assess and monitor the spinal cord injury (SCI) because of its pathophysiology after injury, with different degrees of prognosis and various treatment methods, including laminectomy, durotomy, and myelotomy. Medical communication services with different factors such as time of surgical intervention, procedure choice, spinal cord perfusion pressure (SCPP), and intraspinal pressure (ISP) contribute a significant role in improving neurological outcomes. This review aims to show the benefits of communication services and factors such as ISP, SCPP, and surgical intervention time in order to achieve positive long-term outcomes after an appropriate treatment method in SCI patients. The SCPP was found between 90 and 100 mmHg for the best outcome, MAP was found between 110 and 130 mmHg, and mean ISP is ≤20 mmHg after injury. Laminectomy alone cannot reduce the pressure between the dura and swollen cord. Durotomy and duroplasty considered as treatment choices after severe traumatic spinal cord injury (TSCI).
Collapse
Affiliation(s)
- Jamal Alshorman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Streijger F, Kim KT, So K, Manouchehri N, Shortt K, Okon EB, Morrison C, Fong A, Gupta R, Brown AA, Tigchelaar S, Sun J, Liu E, Keung M, Daly CD, Cripton PA, Sekhon MS, Griesdale DE, Kwon BK. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model. J Neurotrauma 2021; 38:2937-2955. [PMID: 34011164 DOI: 10.1089/neu.2021.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After acute traumatic spinal cord injury (SCI), the spinal cord can swell to fill the subarachnoid space and become compressed by the surrounding dura. In a porcine model of SCI, we performed a duraplasty to expand the subarachnoid space around the injured spinal cord and evaluated how this influenced acute intraparenchymal hemodynamic and metabolic responses, in addition to histological and behavioral recovery. Female Yucatan pigs underwent a T10 SCI, with or without duraplasty. Using microsensors implanted into the spinal cord parenchyma, changes in blood flow (ΔSCBF), oxygenation (ΔPO2), and spinal cord pressure (ΔSCP) during and after SCI were monitored, alongside metabolic responses. Behavioral recovery was tested weekly using the Porcine Injury Behavior Scale (PTIBS). Thereafter, spinal cords were harvested for tissue sparing analyses. In both duraplasty and non-animals, the ΔSCP increased ∼5 mm Hg in the first 6 h post-injury. After this, the SCP appeared to be slightly reduced in the duraplasty animals, although the group differences were not statistically significant after controlling for injury severity in terms of impact force. During the first seven days post-SCI, the ΔSCBF or ΔPO2 values were not different between the duraplasty and control animals. Over 12 weeks, there was no improvement in hindlimb locomotion as assessed by PTIBS scores and no reduction in tissue damage at the injury site in the duraplasty animals. In our porcine model of SCI, duraplasty did not provide any clear evidence of long-term behavioral or tissue sparing benefit after SCI.
Collapse
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea.,Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kitty So
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Allan Fong
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Rishab Gupta
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Jenny Sun
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Ella Liu
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Martin Keung
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Chris D Daly
- Vancouver Spine Surgery Institute, Department of Orthopaedics, and University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Peter A Cripton
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,School of Biomedical Engineering and Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine and Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Donald E Griesdale
- Division of Critical Care Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
20
|
Saadoun S, Jeffery ND. Acute Traumatic Spinal Cord Injury in Humans, Dogs, and Other Mammals: The Under-appreciated Role of the Dura. Front Neurol 2021; 12:629445. [PMID: 33613434 PMCID: PMC7887286 DOI: 10.3389/fneur.2021.629445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
We review human and animal studies to determine whether, after severe spinal cord injury (SCI), the cord swells against the inelastic dura. Evidence from rodent models suggests that the cord swells because of edema and intraparenchymal hemorrhage and because the pia becomes damaged and does not restrict cord expansion. Human cohort studies based on serial MRIs and measurements of elevated intraspinal pressure at the injury site also suggest that the swollen cord is compressed against dura. In dogs, SCI commonly results from intervertebral disc herniation with evidence that durotomy provides additional functional benefit to conventional (extradural) decompressive surgery. Investigations utilizing rodent and pig models of SCI report that the cord swells after injury and that durotomy is beneficial by reducing cord pressure, cord inflammation, and syrinx formation. A human MRI study concluded that, after extensive bony decompression, cord compression against the dura may only occur in a small number of patients. We conclude that the benefit of routinely opening the dura after SCI is only supported by animal and level III human studies. Two randomized, controlled trials, one in humans and one in dogs, are being set up to provide Level I evidence.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London, United Kingdom
| | - Nicolas D Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Hirano R, Asahina R, Hirano T, Hyakkoku A, Miura R, Kunihiro T, Nakamoto Y. Outcomes of extensive hemilaminectomy with durotomy on dogs with presumptive progressive myelomalacia: a retrospective study on 34 cases. BMC Vet Res 2020; 16:476. [PMID: 33287802 PMCID: PMC7720392 DOI: 10.1186/s12917-020-02690-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Progressive myelomalacia (PMM) is a fatal complication of progressive ascending and descending necrosis of the spinal cord after acute spinal cord injury. A recent study suggested that extensive hemilaminectomy with durotomy (EHLD) at the intramedullary T2-hyperintense region which performed immediately after magnetic resonance imaging (MRI) improved the survival rate in dogs with presumptive PMM. The objective of this retrospective study was to evaluate the effects of EHLD on halting the progression of PMM in dogs presumptively diagnosed with PMM which had the interval between MRI and surgery. Results Thirty-four dogs with presumptive PMM which had undergone EHLD with the delay following MRI examination (range, 0 to 3 days) were included. The cranial side of EHLD was set depending on the delay time after MRI, MRI findings, neurological examination and intraoperative macroscopic appearance. Two weeks after surgery, the perioperative survival rate was 97% (33/34). During follow-up with a median time period of 82.5 weeks (range, 0-290 weeks), the postoperative survival rate was 91% (31/34). At the end of the follow-up period, 31 out of 34 dogs were alive without severe postoperative complications while the remaining 2 dogs died from causes not directly attributable to the surgery. There was no improvement in the pelvic limb function of all dogs. Conclusions EHLD appears to be effective in halting the progression of presumptive PMM and preventing morbidity even in dogs which had the interval between MRI and EHLD. Our algorithm of determining the range of EHLD may enable to set the appropriate ranges of EHLD in the cases which develop signs consistent with PMM after MRI examination.
Collapse
Affiliation(s)
- Ryuji Hirano
- Ukyo Animal Hospital, 12-2 Uzumasa-Kyonomichicho, Ukyo-ku, Kyoto, Japan. .,Kyoto Animal Medical Center, 550-4 Bishamoncho, Nakagyo-ku, Kyoto, Japan.
| | - Ryota Asahina
- Kyoto Animal Medical Center, 550-4 Bishamoncho, Nakagyo-ku, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Taiyo Hirano
- Ukyo Animal Hospital, 12-2 Uzumasa-Kyonomichicho, Ukyo-ku, Kyoto, Japan
| | - Ayuko Hyakkoku
- Ukyo Animal Hospital, 12-2 Uzumasa-Kyonomichicho, Ukyo-ku, Kyoto, Japan
| | - Rino Miura
- Ukyo Animal Hospital, 12-2 Uzumasa-Kyonomichicho, Ukyo-ku, Kyoto, Japan
| | - Takuya Kunihiro
- Ukyo Animal Hospital, 12-2 Uzumasa-Kyonomichicho, Ukyo-ku, Kyoto, Japan
| | - Yuya Nakamoto
- Neuro Vets Animal Neurology Clinic, 550-4 Bishamoncho, Nakagyo-ku, Kyoto, Japan
| |
Collapse
|
23
|
Zhang X, Jing Y, Qin C, Liu C, Yang D, Gao F, Yang M, Du L, Li J. Mechanical stress regulates autophagic flux to affect apoptosis after spinal cord injury. J Cell Mol Med 2020; 24:12765-12776. [PMID: 32945105 PMCID: PMC7686991 DOI: 10.1111/jcmm.15863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Increased mechanical stress after spinal cord injury (SCI) expands the scope of nerve tissue damage and exacerbates nerve function defects. Surgical decompression after SCI is a conventional therapeutic strategy and has been proven to have neuroprotective effects. However, the mechanisms of the interaction between mechanical stress and neurons are currently unknown. In this study, we monitored intramedullary pressure (IMP) and investigated the therapeutic benefit of decompression (including durotomy and piotomy) after injury and its underlying mechanisms in SCI. We found that decreased IMP promotes the generation and degradation of LC3 II, promotes the degradation of p62 and enhances autophagic flux to alleviate apoptosis. The lysosomal dysfunction was reduced after decompression. Piotomy was better than durotomy for the histological repair of spinal cord tissue after SCI. However, the autophagy‐lysosomal pathway inhibitor chloroquine (CQ) partially reversed the apoptosis inhibition caused by piotomy after SCI, and the structural damage was also aggravated after CQ administration. An antibody microarray analysis showed that decompression may reverse the up‐regulated abundance of p‐PI3K, p‐AKT and p‐mTOR caused by SCI. Our findings may contribute to a better understanding of the mechanism of decompression and the effects of mechanical stress on autophagy after SCI.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.,Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
24
|
Jeffery ND, Olby NJ, Moore SA. Clinical Trial Design-A Review-With Emphasis on Acute Intervertebral Disc Herniation. Front Vet Sci 2020; 7:583. [PMID: 33134333 PMCID: PMC7512142 DOI: 10.3389/fvets.2020.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
There is a clear need for new methods of treatment of acute disc herniation in dogs, most obviously to address the permanent loss of function that can arise because of the associated spinal cord injury. Clinical trials form the optimal method to introduce new therapies into everyday clinical practice because they are a reliable source of unbiased evidence of effectiveness. Although many designs are available, parallel cohort trials are most widely applicable to acute disc herniation in dogs. In this review another key trial design decision—that between pragmatic and explanatory approaches—is highlighted and used as a theme to illustrate the close relationship between trial objective and design. Acute disc herniation, and acute spinal cord injury, is common in dogs and there is a multitude of candidate interventions that could be trialed. Most current obstacles to large-scale clinical trials in dogs can be overcome by collaboration and cooperation amongst interested veterinarians.
Collapse
Affiliation(s)
- Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sarah A Moore
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
25
|
Zhang X, Qin C, Jing Y, Yang D, Liu C, Gao F, Zhang C, Talifu Z, Yang M, Du L, Li J. Therapeutic effects of rapamycin and surgical decompression in a rabbit spinal cord injury model. Cell Death Dis 2020; 11:567. [PMID: 32703937 PMCID: PMC7378229 DOI: 10.1038/s41419-020-02767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/09/2022]
Abstract
Surgical decompression after spinal cord injury (SCI) is a conventional treatment. Although it has been proven to have clinical effects, there are certain limitations, such as the surgical conditions that must be met and the invasive nature of the treatment. Therefore, there is an urgent need to develop a simple and maneuverable therapy for the emergency treatment of patients with SCI before surgery. Rapamycin (RAPA) has been reported to have potential as a therapeutic agent for SCI. In this study, we observed the therapeutic effects of rapamycin and surgical decompression, in combination or separately, on the histopathology in rabbits with SCI. After combination therapy, intramedullary pressure (IMP) decreased significantly, autophagic flux increased, and apoptosis and demyelination were significantly reduced. Compared with RAPA/surgical decompression alone, the combination therapy had a significantly better effect. In addition, we evaluated the effects of mechanical pressure on autophagy after SCI by assessing changes in autophagic initiation, degradation, and flux. Increased IMP after SCI inhibited autophagic degradation and impaired autophagic flux. Decompression improved autophagic flux after SCI. Our findings provide novel evidence of a promising strategy for the treatment of SCI in the future. The combination therapy may effectively improve emergency treatment after SCI and promote the therapeutic effect of decompression. This study also contributes to a better understanding of the effects of mechanical pressure on autophagy after neurotrauma.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.,Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Beijing, 100050, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China.,China Rehabilitation Science Institute, Beijing, 100068, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, 100068, China. .,China Rehabilitation Science Institute, Beijing, 100068, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China. .,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China. .,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
| |
Collapse
|
26
|
Hale C, Yonan J, Batarseh R, Chaar R, Jonak CR, Ge S, Binder D, Rodgers VGJ. Implantable Osmotic Transport Device Can Reduce Edema After Severe Contusion Spinal Cord Injury. Front Bioeng Biotechnol 2020; 8:806. [PMID: 32754586 PMCID: PMC7366393 DOI: 10.3389/fbioe.2020.00806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Recent findings from the ISCoPe study indicate that, after severe contusion to the spinal cord, edema originating in the spinal cord accumulates and compresses the tissue against the surrounding dura mater, despite decompressive laminectomy. It is hypothesized that this compression results in restricted flow of cerebrospinal fluid (CSF) in the subarachnoid space and central canal and ultimately collapses local vasculature, exacerbating ischemia and secondary injury. Here we developed a surgically mounted osmotic transport device (OTD) that rests on the dura and can osmotically remove excess fluid at the injury site. Tests were performed in 4-h studies immediately following severe (250 kD) contusion at T8 in rats using the OTD. A 3-h treatment with the OTD after 1-h post injury significantly reduced spinal cord edema compared to injured controls. A first approximation mathematical interpretation implies that this modest reduction in edema may be significant enough to relieve compression of local vasculature and restore flow of CSF in the region. In addition, we determined the progression of edema up to 28 days after insult in the rat for the same injury model. Results showed peak edema at 72 h. These preliminary results suggest that incorporating the OTD to operate continuously at the site of injury throughout the critical period of edema progression, the device may significantly improve recovery following contusion spinal cord injury.
Collapse
Affiliation(s)
- Christopher Hale
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Jennifer Yonan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ramsey Batarseh
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Roman Chaar
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Shaokui Ge
- Division of Biostatistics & Bioinformatics, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Victor G J Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
27
|
Jeffery ND, Mankin JM, Ito D, Boudreau CE, Kerwin SC, Levine JM, Krasnow MS, Andruzzi MN, Alcott CJ, Granger N. Extended durotomy to treat severe spinal cord injury after acute thoracolumbar disc herniation in dogs. Vet Surg 2020; 49:884-893. [PMID: 32277768 DOI: 10.1111/vsu.13423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To report recovery of ambulation of dogs treated with extended thoracolumbar durotomy for severe spinal cord injury caused by intervertebral disc herniation. STUDY DESIGN Descriptive cohort. ANIMALS Twenty-six consecutive paraplegic dogs presented with loss of deep pain sensation after acute thoracolumbar intervertebral disc herniation. METHODS Each dog underwent routine diagnostic assessment and surgery for removal of extradural herniated intervertebral disc, followed by a four-vertebral body length durotomy centered on the herniated disc. Each dog was followed up until it was able to walk 10 steps without assistance or until 6 months after surgery. RESULTS Sixteen of 26 dogs recovered to walk unaided (all but one also recovered fecal and urinary continence), and six dogs did not; four dogs were lost to follow-up. One dog was euthanized because of signs consistent with progressive myelomalacia. There was no evidence of detrimental effects of durotomy within the period of study. Using Bayesian analysis, we found a point estimate of successful outcome of 71% with 95% credible interval from 52% to 87%. CONCLUSION Extended durotomy seemed to improve the outcome of dogs in our case series without increase in morbidity. CLINICAL SIGNIFICANCE Extended durotomy appears safe and may improve the outcome of dogs with severe thoracolumbar mixed contusion and compressive injuries associated with acute intervertebral disc extrusion.
Collapse
Affiliation(s)
- Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Joe M Mankin
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Daisuke Ito
- Division of Veterinary Neurology, School of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Sharon C Kerwin
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jon M Levine
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Maya S Krasnow
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Melissa N Andruzzi
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Cody J Alcott
- Veterinary Specialty Center of Tucson, Tucson, Arizona
| | - Nicolas Granger
- CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom.,The Royal Veterinary College, University of London, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
28
|
Transcutaneous contrast-enhanced ultrasound imaging of the posttraumatic spinal cord. Spinal Cord 2020; 58:695-704. [PMID: 31965060 DOI: 10.1038/s41393-020-0415-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVE The current study aims to test whether the blood flow within the contused spinal cord can be assessed in a rodent model via the acoustic window of the laminectomy utilizing transcutaneous ultrasound. SETTING Department of Neurological Surgery, University of Washington, Seattle WA. METHODS Long-Evans rats (n = 12) were subjected to a traumatic thoracic spinal cord injury (SCI). Three days and 10 weeks after injury, animals underwent imaging of the contused spinal cord using ultrafast contrast-enhanced ultrasound with a Vantage ultrasound research system in combination with a 15 MHz transducer. Lesion size and signal-to-noise ratios were estimated via transcutaneous, subcutaneous, or epidural ultrasound acquisition through the acoustic window created by the original laminectomy. RESULTS Following laminectomy, transcutaneous and subcutaneous contrast-enhanced ultrasound imaging allowed for assessment of perfusion and vascular flow in the contused rodent spinal cord. An average loss of 7.2 dB from transcutaneous to subcutaneous and the loss of 5.1 dB from subcutaneous to epidural imaging in signal-to-noise ratio (SNR) was observed. The hypoperfused injury center was measured transcutaneously, subcutaneously and epidurally (5.78 ± 0.86, 5.91 ± 0.53, 5.65 ± 1.07 mm2) at 3 days post injury. The same animals were reimaged again at 10 weeks following SCI, and the area of hypoperfusion had decreased significantly compared with the 3-day measurements detected via transcutaneous, subcutaneous, and epidural imaging respectively (0.69 ± 0.05, 1.09 ± 0.11, 0.95 ± 0.11 mm2, p < 0.001). CONCLUSIONS Transcutaneous ultrasound allows for measurements and longitudinal monitoring of local hemodynamic changes in a rodent SCI model.
Collapse
|
29
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
30
|
Zhang X, Liu CB, Yang DG, Qin C, Dong XC, Li DP, Zhang C, Guo Y, Du LJ, Gao F, Yang ML, Li JJ. Dynamic changes in intramedullary pressure 72 hours after spinal cord injury. Neural Regen Res 2019; 14:886-895. [PMID: 30688275 PMCID: PMC6375044 DOI: 10.4103/1673-5374.249237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intramedullary pressure increases after spinal cord injury, and this can be an important factor for secondary spinal cord injury. Until now there have been no studies of the dynamic changes of intramedullary pressure after spinal cord injury. In this study, telemetry systems were used to observe changes in intramedullary pressure in the 72 hours following spinal cord injury to explore its pathological mechanisms. Spinal cord injury was induced using an aneurysm clip at T10 of the spinal cord of 30 Japanese white rabbits, while another 32 animals were only subjected to laminectomy. The feasibility of this measurement was assessed. Intramedullary pressure was monitored in anesthetized and conscious animals. The dynamic changes of intramedullary pressure after spinal cord injury were divided into three stages: stage I (steep rise) 1–7 hours, stage II (steady rise) 8–38 hours, and stage III (descending) 39–72 hours. Blood-spinal barrier permeability, edema, hemorrhage, and histological results in the 72 hours following spinal cord injury were evaluated according to intramedullary pressure changes. We found that spinal cord hemorrhage was most severe at 1 hour post-spinal cord injury and then gradually decreased; albumin and aquaporin 4 immunoreactivities first increased and then decreased, peaking at 38 hours. These results confirm that severe bleeding in spinal cord tissue is the main cause of the sharp increase in intramedullary pressure in early spinal cord injury. Spinal cord edema and blood-spinal barrier destruction are important factors influencing intramedullary pressure in stages II and III of spinal cord injury.
Collapse
Affiliation(s)
- Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xue-Chao Dong
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun Guo
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
31
|
Khaing ZZ, Cates LN, DeWees DM, Hannah A, Mourad P, Bruce M, Hofstetter CP. Contrast-enhanced ultrasound to visualize hemodynamic changes after rodent spinal cord injury. J Neurosurg Spine 2018; 29:306-313. [DOI: 10.3171/2018.1.spine171202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVETraumatic spinal cord injury (tSCI) causes an almost complete loss of blood flow at the site of injury (primary injury) as well as significant hypoperfusion in the penumbra of the injury. Hypoperfusion in the penumbra progresses after injury to the spinal cord and is likely to be a major contributor to progressive cell death of spinal cord tissue that was initially viable (secondary injury). Neuroprotective treatment strategies seek to limit secondary injury. Clinical monitoring of the temporal and spatial patterns of blood flow within the contused spinal cord is currently not feasible. The purpose of the current study was to determine whether ultrafast contrast-enhanced ultrasound (CEUS) Doppler allows for detection of local hemodynamic changes within an injured rodent spinal cord in real time.METHODSA novel ultrafast CEUS Doppler technique was developed utilizing a research ultrasound platform combined with a 15-MHz linear array transducer. Ultrafast plane-wave acquisitions enabled the separation of higher-velocity blood flow in macrocirculation from low-velocity flow within the microcirculation (tissue perfusion). An FDA-approved contrast agent (microbubbles) was used for visualization of local blood flow in real time. CEUS Doppler acquisition protocols were developed to characterize tissue perfusion both during contrast inflow and during the steady-state plateau. A compression injury of the thoracic spinal cord of adult rats was induced using iris forceps.RESULTSHigh-frequency ultrasound enabled visualization of spinal cord vessels such as anterior spinal arteries as well as central arteries (mean diameter [± SEM] 145.8 ± 10.0 µm; 76.2 ± 4.5 µm, respectively). In the intact spinal cord, ultrafast CEUS Doppler confirmed higher perfusion of the gray matter compared to white matter. Immediately after compression injury of the thoracic rodent spinal cord, spinal cord vessels were disrupted in an area of 1.93 ± 1.14 mm2. Ultrafast CEUS Doppler revealed a topographical map of local tissue hypoperfusion with remarkable spatial resolution. Critical loss of perfusion, defined as less than 40% perfusion compared to the surrounding spared tissue, was seen within an area of 2.21 ± 0.6 mm2.CONCLUSIONSIn our current report, we introduce ultrafast CEUS Doppler for monitoring of spinal vascular structure and function in real time. Development and clinical implementation of this type of imaging could have a significant impact on the care of patients with tSCI.
Collapse
Affiliation(s)
| | | | | | - Alexander Hannah
- 2Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, The University of Washington, Seattle, Washington
| | | | - Matthew Bruce
- 2Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, The University of Washington, Seattle, Washington
| | | |
Collapse
|
32
|
Grassner L, Grillhösl A, Griessenauer CJ, Thomé C, Bühren V, Strowitzki M, Winkler PA. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review. J Neurotrauma 2017; 35:403-410. [PMID: 28922957 DOI: 10.1089/neu.2017.5215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.
Collapse
Affiliation(s)
- Lukas Grassner
- 1 Department of Neurosurgery, Trauma Center Murnau , Germany .,2 Center for Spinal Cord Injuries, Trauma Center Murnau , Germany .,3 Institute of Molecular Regenerative Medicine, Paracelsus Medical University , Salzburg, Austria .,4 Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University , Salzburg, Austria
| | | | - Christoph J Griessenauer
- 6 Department of Neurosurgery, Geisinger Health System , Danville, Pennsylvania.,7 Neurosurgical Service, Department of Surgery, Harvard Medical School , Boston, Massachusetts
| | - Claudius Thomé
- 8 Department of Neurosurgery, Medical University Innsbruck , Austria
| | - Volker Bühren
- 2 Center for Spinal Cord Injuries, Trauma Center Murnau , Germany
| | | | - Peter A Winkler
- 9 Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University , Salzburg, Austria
| |
Collapse
|
33
|
Lyon KA, Huang JH. An improved way to predict neurologic recovery in acute spinal cord injury. Neurology 2017; 89:1654-1655. [PMID: 28916536 DOI: 10.1212/wnl.0000000000004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kristopher A Lyon
- From the Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center; and Department of Surgery, Texas A&M University College of Medicine, Temple
| | - Jason H Huang
- From the Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center; and Department of Surgery, Texas A&M University College of Medicine, Temple.
| |
Collapse
|
34
|
Intraspinal Pressure Monitoring and Extensive Duroplasty in the Acute Phase of Traumatic Spinal Cord Injury: A Systematic Review. World Neurosurg 2017; 105:145-152. [PMID: 28578120 DOI: 10.1016/j.wneu.2017.05.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The prognosis in cervical spinal cord injury is poor, and surgical and neurointensive care management need further improvement. Monitoring of the intraspinal pressure (ISP) at an early stage after traumatic spinal cord injury (tSCI) is useful clinically. MATERIALS AND METHODS Obtaining continuous spinal cord perfusion pressure (SCPP) measurements based on the difference between mean arterial pressure and ISP allows offering best medical and surgical treatment during this critical phase of tSCI. A search was carried out with PubMed, Embase, and Google Scholar up to January 10, 2017. Articles resulting from these searches and relevant references cited in those articles were reviewed. RESULTS The optimal SCPP was found to be between 90 and 100 mm Hg and mean arterial pressure of 110-130. Laminectomy alone was found to be ineffective in the reduction of ISP because it does not lower the pressure exerted by dura on the swollen spinal cord. Therefore, bony decompression with durotomy or duroplasty seems to be the procedure of choice to reduce the ISP less than 20 mm Hg. CONCLUSIONS A randomized controlled trial is required to determine whether laminectomy with durotomy and monitoring of ISP with SCPP optimization improve neurological recovery after tSCI.
Collapse
|
35
|
Khaing ZZ, Ehsanipour A, Hofstetter CP, Seidlits SK. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure. Cells Tissues Organs 2016; 202:67-84. [DOI: 10.1159/000446697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology. Recent reports of increasing intraspinal pressure after SCI suggest that this physiological change can contribute to injury expansion, also known as secondary injury. Hydrogels contain high water content similar to native tissue, and many hydrogels absorb water and swell after formation. In the case of injectable hydrogels for the spinal cord, this process often occurs in or around the spinal cord tissue, and thus may affect intraspinal pressure. In the future, predictable swelling properties of hydrogels may be leveraged to control intraspinal pressure after injury. Here, we review the physiology of SCI, with special attention to the current clinical and experimental literature, underscoring the importance of controlling intraspinal pressure after SCI. We then discuss how hydrogel fabrication, injection, and swelling can impact intraspinal pressure in the context of developing injectable biomaterials for SCI treatment.
Collapse
|