1
|
Clugston JR, Diemer K, Chrabaszcz SL, Long CC, Jo J, Terry DP, Zuckerman SL, Fitch RW. What are the Protocols and Resources for Sport-Related Concussion Among Top National Collegiate Athletic Association Football Programs? A Cross-Sectional Survey of A5 Schools. Clin J Sport Med 2025; 35:60-66. [PMID: 38975931 DOI: 10.1097/jsm.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE This study summarizes findings from a cross-sectional survey conducted among National Collegiate Athletic Association (NCAA) Division 1 football programs, focusing on sport-related concussion (SRC) protocols for the 2018 season. DESIGN Cross-sectional survey study. SETTING 65 football programs within the Autonomy Five (A5) NCAA conferences. PARTICIPANTS Athletic trainers and team physicians who attended a football safety meeting at the NCAA offices June 17 to 18, 2019, representing their respective institutions. INTERVENTION Electronic surveys were distributed on June 14, 2019, before the football safety meeting. MAIN OUTCOME MEASURES Results for 16 unique questions involving SRC protocols and resources were summarized and evaluated. RESULTS The survey garnered responses from 46 of 65 programs (response rate = 71%). For baseline testing , 98% measured baseline postural stability and balance, 87% used baseline neurocognitive testing, while only 61% assessed baseline vestibular and/or ocular function. Regarding concussion prevention , 51% did not recommend additional measures, while 4% and 24% recommended cervical compression collars and omega-3 supplementation, respectively. In postconcussion treatment , 26% initiated aerobic exercise 1 day postconcussion if symptoms were stable, 24% waited at least 48 hours, 4% waited for the athlete to return to baseline, 11% waited until the athlete became asymptomatic, and 35% determined procedures on a case-by-case basis. CONCLUSIONS Most institutions assessed postural stability/balance and neurocognitive functioning at baseline and introduced light aerobic exercise within 48 h postconcussion. There was variation in baseline assessment methods and concussion prevention recommendations. These survey findings deepen our understanding of diverse SRC protocols in NCAA football programs.
Collapse
Affiliation(s)
- James R Clugston
- Sports Medicine Fellowship, Department of Community Health and Family Medicine, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Kelsey Diemer
- Sports Medicine Fellowship, Department of Community Health and Family Medicine, University of Florida, Gainesville, Florida
| | - Sarah L Chrabaszcz
- Department of Emergency Medicine, University of Florida, Gainesville, Florida
- Department of Orthopaedics, University of Florida, Gainesville, Florida
| | - Connor C Long
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Jacob Jo
- School of Medicine, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Sports Concussion Center, Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas P Terry
- Vanderbilt Sports Concussion Center, Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Scott L Zuckerman
- Vanderbilt Sports Concussion Center, Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert Warne Fitch
- Department of Emergency Medicine, Vanderbilt University, Nashville, Tennessee ; and
- Department of Orthopaedic Surgery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Hollin G. Consider the woodpecker: The contested more-than-human ethics of biomimetic technology and traumatic brain injury. SOCIAL STUDIES OF SCIENCE 2022; 52:149-173. [PMID: 34657493 PMCID: PMC8978470 DOI: 10.1177/03063127211052513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic Traumatic Encephalopathy, or CTE, is a neurodegenerative disease caused by traumatic brain injury and most frequently associated with contact sports such as American Football. Perhaps surprisingly, the woodpecker - an animal apparently immune to the effects of head impacts - has increasingly figured into debates surrounding CTE. On the one hand, the woodpecker is described as being contra-human and used to underscore the radical inappropriateness of humans playing football. On the other, there have been attempts to mitigate against the risk of CTE through the creation of biomimetic technologies inspired by woodpeckers. In this article I examine the highly politicized encounters between humans and woodpeckers and discuss how the politics of re-/dis-/en-tanglement during these interspecies relations is rendered meaningful. I show here, first, that those who seek to keep the human and the woodpecker apart envisage social overhaul while biomimetic technologies are put to work for the status quo. Second, I stress that different forms of entanglement have diverse sociopolitical consequences. I conclude by suggesting that the case of the woodpecker troubles a strand of contemporary scholarship in Science and Technology Studies that argues that biotechnologies are inherently transformatory and that foregrounding entanglement and interspecies relations is ethically generative. Instead, a discursive separation of nature and culture may be innovative.
Collapse
|
3
|
Menichetti A, Bartsoen L, Depreitere B, Vander Sloten J, Famaey N. A Machine Learning Approach to Investigate the Uncertainty of Tissue-Level Injury Metrics for Cerebral Contusion. Front Bioeng Biotechnol 2021; 9:714128. [PMID: 34692652 PMCID: PMC8531645 DOI: 10.3389/fbioe.2021.714128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Controlled cortical impact (CCI) on porcine brain is often utilized to investigate the pathophysiology and functional outcome of focal traumatic brain injury (TBI), such as cerebral contusion (CC). Using a finite element (FE) model of the porcine brain, the localized brain strain and strain rate resulting from CCI can be computed and compared to the experimentally assessed cortical lesion. This way, tissue-level injury metrics and corresponding thresholds specific for CC can be established. However, the variability and uncertainty associated with the CCI experimental parameters contribute to the uncertainty of the provoked cortical lesion and, in turn, of the predicted injury metrics. Uncertainty quantification via probabilistic methods (Monte Carlo simulation, MCS) requires a large number of FE simulations, which results in a time-consuming process. Following the recent success of machine learning (ML) in TBI biomechanical modeling, we developed an artificial neural network as surrogate of the FE porcine brain model to predict the brain strain and the strain rate in a computationally efficient way. We assessed the effect of several experimental and modeling parameters on four FE-derived CC injury metrics (maximum principal strain, maximum principal strain rate, product of maximum principal strain and strain rate, and maximum shear strain). Next, we compared the in silico brain mechanical response with cortical damage data from in vivo CCI experiments on pig brains to evaluate the predictive performance of the CC injury metrics. Our ML surrogate was capable of rapidly predicting the outcome of the FE porcine brain undergoing CCI. The now computationally efficient MCS showed that depth and velocity of indentation were the most influential parameters for the strain and the strain rate-based injury metrics, respectively. The sensitivity analysis and comparison with the cortical damage experimental data indicate a better performance of maximum principal strain and maximum shear strain as tissue-level injury metrics for CC. These results provide guidelines to optimize the design of CCI tests and bring new insights to the understanding of the mechanical response of brain tissue to focal traumatic brain injury. Our findings also highlight the potential of using ML for computationally efficient TBI biomechanics investigations.
Collapse
Affiliation(s)
- Andrea Menichetti
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Laura Bartsoen
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Jeng BCP, de Andrade AF, Brasil S, Bor-Seng-Shu E, Belon AR, Robertis M, de-Lima-Oliveira M, Rubiano AM, Godoy DA, Teixeira MJ, Paiva WS. Estimation of intracranial pressure by ultrasound of the optic nerve sheath in an animal model of intracranial hypertension. J Clin Neurosci 2021; 86:174-179. [PMID: 33775322 DOI: 10.1016/j.jocn.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ultrasound of the optic nerve sheath diameter (ONSD) has been used as a non-invasive and cost-effective bedside alternative to invasive intracranial pressure (ICP) monitoring. However, ONSD time-lapse behavior in intracranial hypertension (ICH) and its relief by means of either saline infusion or surgery are still unknown. The objective of this study was to correlate intracranial pressure (ICP) and ultrasonography of the optic nerve sheath (ONS) in an experimental animal model of ICH and determine the interval needed for ONSD to return to baseline levels. METHODS An experimental study was conducted on 30 pigs. ONSD was evaluated by ultrasound at different ICPs generated by intracranial balloon inflation, saline infusion, and balloon deflation, and measured using an intraventricular catheter. RESULTS All variables obtained by ONS ultrasonography such as left, right, and average ONSD (AON) were statistically significant to estimate the ICP value. ONSD changed immediately after balloon inflation and returned to baseline after an average delay of 30 min after balloon deflation (p = 0.016). No statistical significance was observed in the ICP and ONSD values with hypertonic saline infusion. In this swine model, ICP and ONSD showed linear correlation and ICP could be estimated using the formula: -80.5 + 238.2 × AON. CONCLUSION In the present study, ultrasound to measure ONSD showed a linear correlation with ICP, although a short delay in returning to baseline levels was observed in the case of sudden ICH relief.
Collapse
Affiliation(s)
| | | | - Sérgio Brasil
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil.
| | - Edson Bor-Seng-Shu
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Maira Robertis
- Laboratory of Experimental Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Daniel Agustín Godoy
- Neurointensive Care Unit, Sanatorio Pasteur. Intensive Care Unit, Hospital Carlos G. Malbran, Catamarca, Argentina
| | | | - Wellingson Silva Paiva
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil; Hospital Samaritano, Americas Serviços Médicos, São Paulo, Brazil
| |
Collapse
|
5
|
Lempke LB, Fraser JJ, Erdman NK, Barone NA, Saliba S, Resch JE. The Effects of Cranial Cryotherapy on Hemodynamics and Cognition in Healthy Adults. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2020. [DOI: 10.1249/tjx.0000000000000124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Shin DH, Hooten KG, Sindelar BD, Corliss BM, Carlton WRY, Carroll CP, Tomlin JM, Fox WC. Direct enhancement of readiness for wartime critical specialties by civilian-military partnerships for neurosurgical care: residency training and beyond. Neurosurg Focus 2019; 45:E17. [PMID: 30544307 DOI: 10.3171/2018.8.focus18387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022]
Abstract
Military neurosurgery has played an integral role in the development and innovation of neurosurgery and neurocritical care in treating battlefield injuries. It is of paramount importance to continue to train and prepare the next generation of military neurosurgeons. For the Army, this is currently primarily achieved through the military neurosurgery residency at the National Capital Consortium and through full-time out-service positions at the Veterans Affairs-Department of Defense partnerships with the University of Florida, the University of Texas-San Antonio, and Baylor University. The authors describe the application process for military neurosurgery residency and highlight the training imparted to residents in a busy academic and level I trauma center at the University of Florida, with a focus on how case variety and volume at this particular civilian-partnered institution produces neurosurgeons who are prepared for the complexities of the battlefield. Further emphasis is also placed on collaboration for research as well as continuing education to maintain the skills of nondeployed neurosurgeons. With ongoing uncertainty regarding future conflict, it is critical to preserve and expand these civilian-military partnerships to maintain a standard level of readiness in order to face the unknown with the confidence befitting a military neurosurgeon.
Collapse
Affiliation(s)
- David H Shin
- 1Department of Neurological Surgery, University of Florida, Gainesville, Florida
| | - Kristopher G Hooten
- 2Division of Neurosurgery, Department of Surgery, Tripler Army Medical Center, Honolulu, Hawaii; and
| | - Brian D Sindelar
- 1Department of Neurological Surgery, University of Florida, Gainesville, Florida
| | - Brian M Corliss
- 1Department of Neurological Surgery, University of Florida, Gainesville, Florida
| | - William R Y Carlton
- 1Department of Neurological Surgery, University of Florida, Gainesville, Florida
| | | | - Jeffrey M Tomlin
- 3Department of Neurological Surgery, Naval Medical Center, San Diego, California
| | - W Christopher Fox
- 1Department of Neurological Surgery, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Finan JD. Biomechanical simulation of traumatic brain injury in the rat. Clin Biomech (Bristol, Avon) 2019; 64:114-121. [PMID: 29449041 PMCID: PMC6068009 DOI: 10.1016/j.clinbiomech.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans. METHODS Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized. FINDINGS When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models. INTERPRETATION Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.
Collapse
|
8
|
Yuan W, Barber Foss KD, Dudley J, Thomas S, Galloway R, DiCesare C, Leach J, Scheifele P, Farina M, Valencia G, Smith D, Altaye M, Rhea CK, Talavage T, Myer GD. Impact of Low-Level Blast Exposure on Brain Function after a One-Day Tactile Training and the Ameliorating Effect of a Jugular Vein Compression Neck Collar Device. J Neurotrauma 2019; 36:721-734. [PMID: 30136637 DOI: 10.1089/neu.2018.5737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Special Weapons and Tactics (SWAT) personnel who conduct breacher exercises are at risk for blast-related head trauma. We aimed to investigate the potential impact of low-level blast exposure during breacher training on the neural functioning of working memory and auditory network connectivity. We also aimed to evaluate the effects of a jugular vein compression collar, designed to internally mitigate slosh energy absorption, preserving neural functioning and connectivity, following blast exposure. A total of 23 SWAT personnel were recruited and randomly assigned to a non-collar (n = 11) and collar group (n = 12). All participants completed a 1-day breacher training with multiple blast exposure. Prior to and following training, 18 participants (non-collar, n = 8; collar, n = 10) completed functional magnetic resonance imaging (fMRI) of working memory using N-Back task; 20 participants (non-collar, n = 10; collar, n = 12) completed resting-state fMRI. Key findings from the working memory analysis include significantly increased fMRI brain activation in the right insular, right superior temporal pole, right inferior frontal gyrus, and pars orbitalis post-training for the non-collar group (p < 0.05, threshold-free cluster enhancement corrected), but no changes were noted for the collar group. The elevation in fMRI activation in the non-collar group was found to correlate significantly (n = 7, r = 0.943, p = 0.001) with average peak impulse amplitude experienced during the training. In the resting-state fMRI analysis, significant pre- to post-training increase in connectivity between the auditory network and two discrete regions (left middle frontal gyrus and left superior lateral occipital/angular gyri) was found in the non-collar group, while no change was observed in the collar group. These data provided initial evidence of the impact of low-level blast on working memory and auditory network connectivity as well as the protective effect of collar on brain function following blast exposure, and is congruent with previous collar findings in sport-related traumatic brain injury.
Collapse
Affiliation(s)
- Weihong Yuan
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 10 University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Kim D Barber Foss
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jonathan Dudley
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Staci Thomas
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Ryan Galloway
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Christopher DiCesare
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - James Leach
- 3 Division of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 10 University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Pete Scheifele
- 4 Department of Communication Sciences and Disorders, University of Cincinnati , Ohio
| | - Megan Farina
- 4 Department of Communication Sciences and Disorders, University of Cincinnati , Ohio
| | - Gloria Valencia
- 4 Department of Communication Sciences and Disorders, University of Cincinnati , Ohio
| | - David Smith
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Mekibib Altaye
- 5 Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Christopher K Rhea
- 6 Department of Kinesiology, University of North Carolina at Greensboro , Greensboro, North Carolina
| | - Thomas Talavage
- 7 School of Electrical and Computer Engineering, Purdue University , West Lafayette, Indiana
| | - Gregory D Myer
- 2 The SPORT Center, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
- 8 Departments of Pediatrics and Orthopedic Surgery, University of Cincinnati , Ohio
- 9 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts
| |
Collapse
|
9
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
10
|
Reduction in Temporary and Permanent Audiological Injury Through Internal Jugular Vein Compression in a Rodent Blast Injury Model. Otol Neurotol 2017; 38:1205-1212. [DOI: 10.1097/mao.0000000000001500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Osier N, Dixon CE. Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sci 2017; 7:E88. [PMID: 28726717 PMCID: PMC5532601 DOI: 10.3390/brainsci7070088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is increasingly recognized as a significant public health problem which warrants additional research. Part of the effort to understand mTBI and concussion includes modeling in animals. Controlled cortical impact (CCI) is a commonly employed and well-characterized model of experimental TBI that has been utilized for three decades. Today, several commercially available pneumatic- and electromagnetic-CCI devices exist as do a variety of standard and custom injury induction tips. One of CCI's strengths is that it can be scaled to a number of common laboratory animals. Similarly, the CCI model can be used to produce graded TBI ranging from mild to severe. At the mild end of the injury spectrum, CCI has been applied in many ways, including to study open and closed head mTBI, repeated injuries, and the long-term deficits associated with mTBI and concussion. The purpose of this mini-review is to introduce the CCI model, discuss ways the model can be applied to study mTBI and concussion, and compare CCI to alternative pre-clinical TBI models.
Collapse
Affiliation(s)
- Nicole Osier
- School of Nursing, Holistic Adult Health Division, University of Texas at Austin, Austin, TX 78701, USA.
- Dell Medical School, Department of Neurology, University of Texas at Austin, Austin, TX 78701, USA.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|