1
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
2
|
Yu H, Liu Z, Pang M, Luo Q, Huang C, He W, Liu B, Rong L. Wallerian Degeneration Assessed by Multi-Modal Magnetic Resonance Imaging of Cervical Spinal Cord Is Associated With Neurological Impairment After Spinal Cord Injury. J Neurotrauma 2024; 41:1240-1252. [PMID: 38204213 DOI: 10.1089/neu.2023.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
While Wallerian degeneration (WD) is a crucial pathological process induced with spinal cord injury (SCI), its underlying mechanisms is still understudied. In this study, we aim to assess structural alterations and clinical significance of WD in the cervical cord following SCI using multi-modal magnetic resonance imaging (MRI), which combines T2*-weighted imaging and diffusion tensor imaging (DTI). T2*-weighted images allow segmentation of anatomical structures and the detection of WD on macrostructural level. DTI, on the other hand, can identify the reduction in neuroaxonal integrity by measuring the diffusion of water molecules on the microstructural level. In this prospective study, 35 SCI patients (19 paraplegic and 16 tetraplegic patients) and 12 healthy controls were recruited between July 2020 and May 2022. The hyperintensity voxels in the dorsal column was manually labeled as WD on T2*-weighted images. The mean cross-sectional area (CSA) and mean DTI indexes of WD at the C2 level were calculated and compared between groups. Correlation analysis was used to determine the associations of the magnitude of WD with lesion characteristics and clinical outcomes. Compared with controls, SCI patients showed evident hyperintensity (35/35) and decreased neuroaxonal integrity (p < 0.05) within the dorsal column at the C2 level. A higher neurological level of injury was associated with a larger mean CSA and reduction in neuroaxonal integrity within WD (p < 0.05). Smaller total and dorsal tissue bridges were related to greater mean CSA and lower fractional anisotropy values in WD (p < 0.05), respectively. Moreover, SCI participants with significantly larger CSAs and significantly lower microstructural integrity had worse sensory outcomes (p < 0.05). This comprehensive evaluation of WD can help us better understand the mechanisms of WD, monitor progression, and assess the effectiveness of therapeutic interventions after SCI.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhenzhen Liu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mao Pang
- Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Qiuxia Luo
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chong Huang
- Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijie He
- Department of Orthopedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Talbott JF, Shah V, Ye AQ. Diffusion Imaging of the Spinal Cord: Clinical Applications. Radiol Clin North Am 2024; 62:273-285. [PMID: 38272620 DOI: 10.1016/j.rcl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spinal cord pathologic condition often presents as a neurologic emergency where timely and accurate diagnosis is critical to expedite appropriate treatment and minimize severe morbidity and even mortality. MR imaging is the gold standard imaging technique for diagnosing patients with suspected spinal cord pathologic condition. This review will focus on the basic principles of diffusion imaging and how spinal anatomy presents technical challenges to its application. Both the promises and shortcomings of spinal diffusion imaging will then be explored in the context of several clinical spinal cord pathologies for which diffusion has been evaluated.
Collapse
Affiliation(s)
- Jason F Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital.
| | - Vinil Shah
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| | - Allen Q Ye
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Avenue, Room 1X57, San Francisco, CA 94110, USA; Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, 505 Parnassus Avenue, #M-391, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Fang Y, Li S, Wang J, Zhang Z, Jiang W, Wang C, Jiang Y, Guo H, Han X, Tian W. Diagnostic efficacy of tract-specific diffusion tensor imaging in cervical spondylotic myelopathy with electrophysiological examination validation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1230-1244. [PMID: 38286908 DOI: 10.1007/s00586-023-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 01/31/2024]
Abstract
PURPOSE This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.
Collapse
Affiliation(s)
- Yanming Fang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Jinchao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Neurological Electrophysiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wen Jiang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Radiology Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Yuancheng Jiang
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiao Han
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China.
| | - Wei Tian
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Spine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Kang K, Fleming K, Sathe A, Muller J, Harrop J, Middleton D, Heller J, Sharan A, Mohamed F, Krisa L, Alizadeh M. Microstructural alterations of major thalamic nuclei in the chronic pediatric spinal cord injured population. World Neurosurg X 2024; 21:100268. [PMID: 38187507 PMCID: PMC10767188 DOI: 10.1016/j.wnsx.2023.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Background The brain undergoes reorganization following spinal cord injury (SCI), but little is known about how the thalamus is affected in pediatric SCIs. Purpose To characterize microstructural alterations in the thalamus after SCI with diffusion tensor imaging (DTI) metrics. Methods 18 pediatric participants with chronic SCI (8-20 years) were stratified using the American Spinal Injury Association Impairment Scale (AIS) into groups: A, B, and C/D. DTI of the brain used a 3 T Siemens Verio MRI using the parameters: 20 directions, number of averages = 3, b = 1000 s/mm2, voxel size = 1.8 mm × 1.8 mm, slice thickness = 5 mm, TE = 95 ms, TR = 4300 ms, 30 slices, FOV = 230 × 230 mm2, matrix = 128 × 128, acquisition time = 4:45 min. Diffusion data was processed to generate DTI metrics FA, MD, AD, and RD. Data analysis DTI metrics were acquired by superimposing the AAL3 thalamic atlas onto participant diffusion images registered to MNI152 space. We utilized a multiple Mann-Whitney U-test to compare between AIS groups, considering values of p ≤ 0.05 as significant. Results FA, AD, RD, and MD significantly differed in thalamic nuclei between AIS groups A vs B and B vs C/D. Significant nuclei include the right ventral anterior, left intralaminar, bilateral lateral pulvinar, and right lateral geniculate. Conclusion Our findings suggest the presence of microstructural alterations based on SCI severity in pediatric patients. These results are encouraging and warrant further study.
Collapse
Affiliation(s)
- K. Kang
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - K. Fleming
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - A. Sathe
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - J. Muller
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - J. Harrop
- Department of Neurosurgery, Thomas Jefferson University, 909 Walnut Street, 2nd Floor, Philadelphia, PA, 19107, USA
| | - D. Middleton
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - J.E. Heller
- Department of Neurosurgery, Thomas Jefferson University, 909 Walnut Street, 2nd Floor, Philadelphia, PA, 19107, USA
| | - A. Sharan
- Department of Neurosurgery, Thomas Jefferson University, 909 Walnut Street, 2nd Floor, Philadelphia, PA, 19107, USA
| | - F. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - L. Krisa
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| | - M. Alizadeh
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St., Philadelphia, PA, 19107, USA
| |
Collapse
|
6
|
Middleton DM, Shahrampour S, Krisa L, Liu W, Nair G, Jacobson S, Conklin CJ, Alizadeh M, Faro SH, Mulcahey MJ, Mohamed FB. Correlations of diffusion tensor imaging and clinical measures with spinal cord cross-sectional area measurements in pediatric spinal cord injury patients. J Spinal Cord Med 2023; 46:950-957. [PMID: 34855576 PMCID: PMC10653768 DOI: 10.1080/10790268.2021.1997027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The purpose of this work was to employ a semi-automatic method for measuring spinal cord cross-sectional area (SCCSA) and investigate the correlations between diffusion tensor imaging (DTI) metrics and SCCSA for the cervical and thoracic spinal cord for typically developing pediatric subjects and pediatric subject with spinal cord injury. METHODS Ten typically developing (TD) pediatric subjects and ten pediatric subjects with spinal cord injury (SCI) were imaged using a Siemens Verio 3 T MR scanner to acquire DTI and high-resolution anatomic scans covering the cervical and thoracic spinal cord (C1-T12). SCCSA was measured using a semi-automated edge detection algorithm for the entire spinal cord. DTI metrics were obtained from whole cord axial ROIs at each vertebral level. SCCSA measures were compared to DTI metrics by vertebral level throughout the entire cord, and above and below the injury site. Correlation analysis was performed to compare SCCSA, DTI and clinical measures as determined by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination. RESULTS In subjects with SCI, FA and SCCSA had a positive correlation (r = 0.81, P < 0.01), while RD and SCCSA had a negative correlation (r = -0.68, P = 0.02) for the full spinal cord. FA and SCCSA were correlated above (r = 0.56, P < 0.01) and below (r = 0.54, P < 0.01) the injury site. TD subjects showed negative correlations between AD and SCCSA (r = -0.73, P = 0.01) and RD and SCCSA (r = -0.79, P < 0.01). CONCLUSION The ability to quickly and effectively measure SCCSA in subjects with SCI has the potential to allow for a better understanding of the progression of atrophy following a SCI. Correlations between cord cross section and DTI metrics by vertebral level suggest that imaging inferior and superior to lesion may yield useful information for diagnosis and prognosis.
Collapse
Affiliation(s)
- Devon M. Middleton
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shiva Shahrampour
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Winston Liu
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Govind Nair
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | | - Mahdi Alizadeh
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Scott H. Faro
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - M. J. Mulcahey
- College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B. Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Hussain O, Kaushal M, Agarwal N, Kurpad S, Shabani S. The Role of Magnetic Resonance Imaging and Computed Tomography in Spinal Cord Injury. Life (Basel) 2023; 13:1680. [PMID: 37629537 PMCID: PMC10455833 DOI: 10.3390/life13081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic injuries of the spine are associated with long-term morbidity and mortality. Timely diagnosis and appropriate management of mechanical instability and spinal cord injury are important to prevent further neurologic deterioration. Spine surgeons require an understanding of the essential imaging techniques concerning the diagnosis, management, and prognosis of spinal cord injury. We present a review in the role of computed tomography (CT) including advancements in multidetector CT (MDCT), dual energy CT (DECT), and photon counting CT, and how it relates to spinal trauma. We also review magnetic resonance imaging (MRI) and some of the developed MRI based classifications for prognosticating the severity and outcome of spinal cord injury, such as diffusion weighted imaging (DWI), diffusion tractography (DTI), functional MRI (fMRI), and perfusion MRI.
Collapse
Affiliation(s)
- Omar Hussain
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (O.H.); (M.K.); (S.K.)
| | - Mayank Kaushal
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (O.H.); (M.K.); (S.K.)
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Shekar Kurpad
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (O.H.); (M.K.); (S.K.)
| | - Saman Shabani
- Department of Neurological Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (O.H.); (M.K.); (S.K.)
| |
Collapse
|
8
|
Porcine Model of the Growing Spinal Cord-Changes in Diffusion Tensor Imaging Parameters. Animals (Basel) 2023; 13:ani13040565. [PMID: 36830353 PMCID: PMC9951717 DOI: 10.3390/ani13040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique that has promising applications for the objective assessment of the microstructure of the spinal cord. This study aimed to verify the parameters obtained using DTI change during the growth process. We also wanted to identify if the DTI values change on the course of the spinal cord. The model organism was a healthy growing porcine spinal cord (19 pigs, Polish White, weight 24-120 kg, mean 48 kg, median 48 kg, age 2.5-11 months, mean 5 months, median 5.5 months). DTI parameters were measured in three weight groups: up to 29 kg (five pigs), 30-59 kg (six pigs), and from 60 kg up (eight pigs). DTI was performed with a 1.5 Tesla magnetic resonance scanner (Philips, Ingenia). Image post-processing was done using the Fiber Track package (Philips Ingenia workstation) by manually drawing the regions of interest (nine ROIs). The measurements were recorded for three sections: the cervical, thoracolumbar and lumbar segments of the spinal cord at the C4/C5, Th13/L1, and L4/L5 vertebrae levels. In each case, one segment was measured cranially and one caudally from the above-mentioned places. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained for each ROIs and compared. It is shown that there is a correlation between age, weight gain, and change in FA and ADC parameters. Moreover, it is noted that, with increasing weight and age, the FA parameter increases and ADC decreases, whereas the FA and ADC measurement values did not significantly change between the three sections of the spinal cord. These findings could be useful in determining the reference values for the undamaged spinal cords of animals and growing humans.
Collapse
|
9
|
Lascu CF, Buhaș CL, Mekeres GM, Bulzan M, Boț RB, Căiță GA, Voiță IB, Pogan MD. Advantages and Limitations in the Evaluation of the Neurological and Functional Deficit in Patients with Spinal Cord Injuries. Clin Pract 2022; 13:14-21. [PMID: 36648842 PMCID: PMC9844280 DOI: 10.3390/clinpract13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Vertebro-medullary trauma (VMT) causes osteo-articular injuries in a varied anatomical lesion associated with multiple clinical manifestations and therapeutic indications. The neurological evaluation of patients who have suffered a spinal cord injury (SCI) is costly in testing the motor and sensory function. To standardize the assessment, several scales are used that measure the neurological deficit in order to guide subsequent treatment according to complete or incomplete SCI. The aim of this study is to identify and present the relevant tools for assessing SCI. (2) Methods: Relevant SCI studies were used for a fact-finding investigation from a rational and critical perspective of this field of research. The relationship between clinical tools and those with a psychosocial component was assessed based on studies reported in the literature. (3) Results: SCI severity scales have been proposed throughout to be able to estimate the functional prognosis of victims of these traumatic events. These tools can be divided into scales for assessing the neurological deficit due to trauma, and functional scales that assess the ability to perform daily activities, self-care, etc. (4) Conclusions: The closest scale to the need for standardization and the most accurate assessment of neurological deficits secondary to SCI is ASIA/IMSOP.
Collapse
Affiliation(s)
- Camelia Florentina Lascu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Camelia Liana Buhaș
- Morphological Disciplines Department, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Legal Medicine, County Clinical Emergency Hospital of Oradea, 410169 Oradea, Romania
| | - Gabriel Mihai Mekeres
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Correspondence:
| | - Mădălin Bulzan
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Robert Bogdan Boț
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Georgiana Albina Căiță
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ioan Bogdan Voiță
- Department of Anesthesiology and Intensive Care, Regional Institute of Gastroenterology and Hepatology “Prof. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Mihaela Dana Pogan
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
10
|
Javeed S, Greenberg JK, Zhang JK, Dibble CF, Khalifeh JM, Liu Y, Wilson TJ, Yang LJ, Park Y, Ray WZ. Derivation and Validation of a Clinical Prediction Rule for Upper Limb Functional Outcomes After Traumatic Cervical Spinal Cord Injury. JAMA Netw Open 2022; 5:e2247949. [PMID: 36542381 PMCID: PMC9857030 DOI: 10.1001/jamanetworkopen.2022.47949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Traumatic cervical spinal cord injury (SCI) can result in debilitating paralysis. Following cervical SCI, accurate early prediction of upper limb recovery can serve an important role in guiding the appropriateness and timing of reconstructive therapies. OBJECTIVE To develop a clinical prediction rule to prognosticate upper limb functional recovery after cervical SCI. DESIGN, SETTING, AND PARTICIPANTS This prognostic study was a retrospective review of a longitudinal cohort study including patients enrolled in the National SCI model systems (SCIMS) database in US. Eligible patients were 15 years or older with tetraplegia (neurological level of injury C1-C8, American Spinal Cord Injury Association [ASIA] impairment scale [AIS] A-D), with early (within 1 month of SCI) and late (1-year follow-up) clinical examinations from 2011 to 2016. The data analysis was conducted from September 2021 to June 2022. MAIN OUTCOMES AND MEASURES The primary outcome was a composite of dependency in eating, bladder management, transfers, and locomotion domains of functional independence measure at 1-year follow-up. Each domain ranges from 1 to 7 with a lower score indicating greater functional dependence. Composite dependency was defined as a score of 4 or higher in at least 3 chosen domains. Multivariable logistic regression was used to predict the outcome based on early neurological variables. Discrimination was quantified using C statistics, and model performance was internally validated with bootstrapping and 10-fold cross-validation. The performance of the prediction score was compared with AIS grading. Data were split into derivation (2011-2014) and temporal-validation (2015-2016) cohorts. RESULTS Among 2373 patients with traumatic cervical SCI, 940 had complete 1-year outcome data (237 patients [25%] aged 60 years or older; 753 men [80%]). The primary outcome was present in 118 patients (13%), which included 92 men (78%), 83 (70%) patients who were younger than 60 years, and 73 (62%) patients experiencing AIS grade A SCI. The variables significantly associated with the outcome were age (age 60 years or older: OR, 2.31; 95% CI, 1.26-4.19), sex (men: OR, 0.60; 95% CI, 0.31-1.17), light-touch sensation at C5 (OR, 0.44; 95% CI, 0.44-1.01) and C8 (OR, 036; 95% CI, 0.24-0.53) dermatomes, and motor scores of the elbow flexors (C5) (OR, 0.74; 95% CI, 0.60-0.89) and wrist extensors (C6) (OR, 0.61; 95% CI, 0.49-0.75). A multivariable model including these variables had excellent discrimination in distinguishing dependent from independent patients in the temporal-validation cohort (C statistic, 0.90; 95% CI, 0.88-0.93). A clinical prediction score (range, 0 to 45 points) was developed based on these measures, with higher scores increasing the probability of dependency. The discrimination of the prediction score was significantly higher than from AIS grading (change in AUC, 0.14; 95% CI, 0.10-0.18; P < .001). CONCLUSIONS AND RELEVANCE The findings of this study suggest that this prediction rule may help prognosticate upper limb function following cervical SCI. This tool can be used to set patient expectations, rehabilitation goals, and aid decision-making regarding the appropriateness and timing for upper limb reconstructive surgeries.
Collapse
Affiliation(s)
- Saad Javeed
- Department of Neurological Surgery, Washington University, St. Louis, Missouri
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University, St. Louis, Missouri
| | - Justin K. Zhang
- Department of Neurological Surgery, Washington University, St. Louis, Missouri
| | | | - Jawad M. Khalifeh
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Ying Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Thomas J. Wilson
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Lynda J. Yang
- Department of Neurological Surgery, University of Michigan School of Medicine, Ann Arbor
| | - Yikyung Park
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University, St. Louis, Missouri
| |
Collapse
|
11
|
Nanda G, Jain P, Suman A, Mahajan H. Role of diffusion tensor imaging and tractography in spinal cord injury. J Clin Orthop Trauma 2022; 33:101997. [PMID: 36118562 PMCID: PMC9475303 DOI: 10.1016/j.jcot.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injuries pose grave medical and socioeconomic burdens warranting measures for early diagnosis, triaging, prognostication and therapeutics. Imaging has since long played a pivotal role in this regard, with continuing research and technological advancements opening newer frontiers. One such advanced Magnetic resonance (MR) technique is Diffusion tensor imaging (DTI) which assesses cord microstructure by tracking the movement of water molecules in biological tissues. DTI utilizes the principle of anisotropy exhibited by the normal compact white matter (WM) tracts of the cord, in which direction-dependent water molecular motion is seen along the axonal axis. Disruption of this complex structure in response to injury alters the movement of these molecules, interrupting anisotropy and thereby DTI metrics. Evaluation of DTI images can be done both by quantitative indices, of which fractional anisotropy (FA) and mean diffusivity (MD) are the most commonly used and by qualitative fiber tracking (tractography) methods in which three-dimensional WM tracts are reconstructed by algorithmic post-processing. Reduced FA is consistently seen at injury sites as a direct consequence of disturbance of anisotropy. Diffusivity values are however more variable with both high and low values recorded across studies. 3D tractography images allow visual assessment of cord integrity, morphology, and orientation. Significant correlation is found between DTI parameters and various spinal injury scores. Furthermore, DTI also helps in accurate lesion mapping and in assessing cord changes distant from injury epicenter providing a holistic evaluation. From its inception, consistent progress in the understanding and application of DTI has effectuated its clinical utility and impact. Incorporation into day-to-day diagnostics is however still challenging, due to suboptimal image acquisition, difficult post-processing, and lack of standardized protocols & image interpretation guidelines. Further research with technical validation, development of normative and disease data sets, and histological confirmation will help establish this novel technique in routine diagnostics.
Collapse
Affiliation(s)
| | - Pooja Jain
- Mahajan Imaging, C6/8 SDA, New Delhi, India
| | | | | |
Collapse
|
12
|
Zhu F, Wang Y, Kong X, Liu Y, Zeng L, Jing X, Yao S, Chen K, Yang L, Guo X. Assessment of acute traumatic cervical spinal cord injury using conventional magnetic resonance imaging in combination with diffusion tensor imaging-tractography: a retrospective comparative study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1700-1709. [PMID: 35639157 DOI: 10.1007/s00586-022-07207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The application of conventional magnetic resonance imaging (MRI) in combination with diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) to diagnose acute traumatic cervical SCI has not been studied. This study explores the role of MRI with DTI-DTT in the diagnosis of acute traumatic cervical spinal cord injury (SCI). METHODS Thirty patients with acute traumatic cervical SCI underwent conventional MRI and DTI-DTT. Conventional MRI was used to detect the intramedullary lesion length (IMLL) and intramedullary hemorrhage length (IMHL). DTI was used to detect the spinal cord's fractional anisotropy (FA) and apparent diffusion coefficient value, and DTT detected the imaginary white matter fiber volume and the connection rates of fiber tractography (CRFT). Patients' neurological outcome was determined using the American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades. RESULTS Patients were divided into group A (without AIS grade conversion) and group B (with AIS grade conversion). The IMLL and IMHL of group A were significantly higher than those of group B. The FA and CRFT of group A were significantly lower than those of group B. The final AIS grade was negatively correlated with the IMLL and IMHL, and positively correlated with the FA and CRFT. According to imaging features based on conventional MRI and DTI-DTT, we propose a novel classification and diagnostic procedure. CONCLUSIONS The combination of conventional MRI with DTI-DTT is a valid diagnostic approach for SCI. Lower IMLL and IMHL, and higher FA value and CRFT are linked to better neurological outcomes.
Collapse
Affiliation(s)
- Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China.,Department of Orthopaedics, Xinqiao Hospital, Army Military University, Chongqing, China
| | - Yulong Wang
- Department of Orthopedics, Wuhan No. 1 Hospital, Wuhan Integrated TCM & Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, China.
| |
Collapse
|
13
|
Krisa L, Middleton DM, Saksena S, Faro SH, Leiby BE, Mohamed FB, Mulcahey MJ. Clinical Utility of Diffusion Tensor Imaging as a Biomarker to Identify Microstructural Changes in Pediatric Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2022; 28:1-12. [PMID: 35521062 PMCID: PMC9009200 DOI: 10.46292/sci21-00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lack of clarity about the neurological consequence of spinal cord injury (SCI) in children causes speculation about diagnoses, recovery potential, and treatment effectiveness. Diffusion tensor imaging (DTI) has shown promising results as a biomarker to evaluate spinal cord integrity at a microstructural level. Objectives To look at the difference between pediatric participants with and without SCI to determine which DTI metrics best categorize spinal cord tissue damage and to correlate DTI metrics with two clinical measures: Capabilities of the Upper Extremity Test (CUE-T) and Spinal Cord Independence Measure version III (SCIM-III). Methods This single-site, prospective study included pediatric participants with SCI (n = 26) and typically developed (TD) control subjects (n = 36). All participants underwent two magnetic resonance imaging (MRI) scans on a 3T MR scanner. Participants with SCI also completed the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), CUE-T, and SCIM-III outcomes measures. Results This study found significant strength of association between fractional anisotropy (FA) and upper extremity muscle strength (UEMS) in participants with SCI. Most DTI parameters showed a significant difference between participants with SCI and TD participants and a moderate correlation with the CUE-T total score. Regional effects on group differences were found to be significant. Conclusion This study demonstrates the strength of association between DTI parameters and clinical measures in the pedantic SCI population. It illustrates DTI as a potential biomarker of SCI location and severity in the pediatric SCI population.
Collapse
Affiliation(s)
- Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
,Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
,Center for Outcomes and Measurement, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Devon M. Middleton
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sona Saksena
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott H. Faro
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E. Leiby
- Department of Pharmacology & Experimental Therapeutics, Biostatistics Division, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - MJ Mulcahey
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania
,Center for Outcomes and Measurement, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review covers recent advances in identifying conventional and quantitative neuroimaging spinal cord biomarkers of lesion severity and remote spinal cord pathology following traumatic spinal cord injury (SCI). It discusses the potential of the most sensitive neuroimaging spinal cord biomarkers to complement clinical workup and improve prediction of recovery. RECENT FINDINGS At the injury site, preserved midsagittal tissue bridges - based on conventional sagittal T2-weighted scans - can be identified in the majority of SCI patients; its width being predictive of recovery. Remote from the injury, diffusion indices, and myelin/iron-sensitive neuroimaging-based changes are sensitive to secondary disease processes; its magnitude of change being associated with neurological outcome. SUMMARY Neuroimaging biomarkers reveal focal and remote cord pathology. These biomarkers show sensitivity to the underlying disease processes and are clinically eloquent. Thus, they improve injury characterization, enable spatiotemporal tracking of cord pathology, and predict recovery of function following traumatic SCI. Neuroimaging biomarkers, therefore, hold potential to complement the clinical diagnostic workup, improve patient stratification, and can serve as potential endpoints in clinical trials.
Collapse
Affiliation(s)
- Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Abstract
In the evaluation of spinal trauma, diagnostic imaging is of paramount importance. Computed tomography (CT), flexion/extension radiographs, and MRI are complementary modalities. CT is typically obtained in the initial setting of spinal trauma and provides detailed information about osseous structures. MRI provides detailed information about structural injury to the spinal cord. Diffusion tensor imaging provides microstructural information about the integrity of the axons and myelin sheaths, but its clinical use is limited. Novel imaging techniques may be better suited for the acute clinical setting and are under development for potential future clinical use.
Collapse
|
16
|
Rink S, Pavlov S, Wöhler A, Bendella H, Manthou M, Papamitsou T, Dunlop SA, Angelov DN. Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. J Neuropathol Exp Neurol 2021; 79:1203-1217. [PMID: 32594136 DOI: 10.1093/jnen/nlaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
The relationships between various parameters of tissue damage and subsequent functional recovery after spinal cord injury (SCI) are not well understood. Patients may regain micturition control and walking despite large postinjury medullar cavities. The objective of this study was to establish possible correlations between morphological findings and degree of functional recovery after spinal cord compression at vertebra Th8 in rats. Recovery of motor (Basso, Beattie, Bresnahan, foot-stepping angle, rump-height index, and ladder climbing), sensory (withdrawal latency), and bladder functions was analyzed at 1, 3, 6, 9, and 12 weeks post-SCI. Following perfusion fixation, spinal cord tissue encompassing the injury site was cut in longitudinal frontal sections. Lesion lengths, lesion volumes, and areas of perilesional neural tissue bridges were determined after staining with cresyl violet. The numbers of axons in these bridges were quantified after staining for class III β-tubulin. We found that it was not the area of the spared tissue bridges, which is routinely determined by magnetic resonance imaging (MRI), but the numbers of axons in them that correlated with functional recovery after SCI (Spearman's ρ > 0.8; p < 0.001). We conclude that prognostic statements based only on MRI measurements should be considered with caution.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and Embryology, Medical University, Varna, Bulgaria
| | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Sarah A Dunlop
- School of Biological Sciences, The University of Western Australia, Australia
| | | |
Collapse
|
17
|
Han X, Ma X, Li D, Wang J, Jiang W, Cheng X, Li G, Guo H, Tian W. The Evaluation and Prediction of Laminoplasty Surgery Outcome in Patients with Degenerative Cervical Myelopathy Using Diffusion Tensor MRI. AJNR Am J Neuroradiol 2020; 41:1745-1753. [PMID: 32816762 DOI: 10.3174/ajnr.a6705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE DTI has been proved valuable for the diagnosis of degenerative cervical myelopathy, whereas its capacity for predicting the outcome of surgery is still under debate. Here we conduct a prospective cohort study to analyze the capacity of DTI for evaluating and predicting laminoplasty surgery outcome for degenerative cervical myelopathy. MATERIALS AND METHODS We recruited 55 patients with degenerative cervical myelopathy who underwent DTI before surgery and at 3- and 6-month follow-up stages, and 20 healthy subjects. For clinical assessment, the modified Japanese Orthopedic Association scale was recorded for each patient at different stages. DTI metrics were compared between patients before surgery and healthy subjects. Spearman correlation and receiver operating characteristic were used to analyze the evaluation and prediction capacity of DTI for the modified Japanese Orthopedic Association scale, respectively. We analyzed different vertebral levels: maximal compression level, average of all compression levels, and C2 level. RESULTS DTI metrics were significantly different between patients before surgery and healthy subjects. Before surgery, DTI for the maximal compression level or DTI for the average of all compression levels had no significant correlation with the modified Japanese Orthopedic Association scale. For all stages, DTI at the C2 level was correlated with the modified Japanese Orthopedic Association scale. DTI metrics at the C2 level before surgery were significantly correlated with the postoperative modified Japanese Orthopedic Association scale recovery rate. Receiver operating characteristic analysis demonstrated that fractional anisotropy at C2 was capable of predicting the postoperative modified Japanese Orthopedic Association scale recovery rate (P = .04). CONCLUSIONS The DTI metrics before laminoplasty surgery, especially fractional anisotropy at the C2 level, have the potential for evaluating and predicting the degenerative cervical myelopathy surgery outcome.
Collapse
Affiliation(s)
- X Han
- From the Department of Spine Surgery (X.H., D.L., J.W., W.T.), Beijing Jishuitan Hospital, Beijing, China.,Beijing Institute of Traumatology and Orthopaedics (X.H.), Beijing, China
| | - X Ma
- Center for Magnetic Resonance Research (X.M.), University of Minnesota, Minneapolis, Minnesota
| | - D Li
- From the Department of Spine Surgery (X.H., D.L., J.W., W.T.), Beijing Jishuitan Hospital, Beijing, China.,National Center of Gerontology (D.L.), Beijing, China
| | - J Wang
- From the Department of Spine Surgery (X.H., D.L., J.W., W.T.), Beijing Jishuitan Hospital, Beijing, China
| | - W Jiang
- Department of Radiology (W.J., X.C., G.L.), Beijing Jishuitan Hospital, Beijing, China
| | - X Cheng
- Department of Radiology (W.J., X.C., G.L.), Beijing Jishuitan Hospital, Beijing, China
| | - G Li
- Department of Radiology (W.J., X.C., G.L.), Beijing Jishuitan Hospital, Beijing, China
| | - H Guo
- Center for Biomedical Imaging Research (H.F.), Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - W Tian
- From the Department of Spine Surgery (X.H., D.L., J.W., W.T.), Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
18
|
Wilkins N, Skinner NP, Motovylyak A, Schmit BD, Kurpad S, Budde MD. Evolution of Magnetic Resonance Imaging as Predictors and Correlates of Functional Outcome after Spinal Cord Contusion Injury in the Rat. J Neurotrauma 2020; 37:889-898. [PMID: 31830856 DOI: 10.1089/neu.2019.6731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical methods for determining the severity of traumatic spinal cord injury (SCI) and long-term functional outcome in the acute setting are limited in their prognostic accuracy because of the heterogeneity of injury and dynamic injury progression. The aim of this study was to evaluate the time course and sensitivity of advanced magnetic resonance imaging (MRI) methods to neurological function after SCI in a rat contusion model. Rats received a graded contusion injury at T10 using a weight-drop apparatus. MRI consisted of morphological measures from T2-weighted imaging, quantitative T2 imaging, and diffusion-weighted imaging (DWI) at 1, 30, and 90 days post-injury (dpi). The derived metrics were compared with neurological function assessed using weekly Basso, Beattie, and Bresnahan (BBB) locomotor scoring and return of reflexive micturition function. At the acute time point (1 dpi), diffusion metrics sensitive to axonal injury at the injury epicenter had the strongest correlation with time-matched BBB scores and best predicted 90-dpi BBB scores. At 30 dpi, axonal water fraction derived from DWI and T2 values were both correlated with time-matched locomotor scores. At the chronic time point (90 dpi), cross-sectional area was most closely correlated to BBB. Overall, the results demonstrate differential sensitivity of MRI metrics at different time points after injury, but the metrics follow the expected pathology of acute axonal injury followed by continued degeneration and finally a terminal level of atrophy. Specificity of DWI in the acute setting may make it impactful as a prognostic tool while T2 imaging provided the most information about injury severity in chronic injury.
Collapse
Affiliation(s)
- Natasha Wilkins
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alice Motovylyak
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, Shi HY, Sun HT, Chen XY, Zhang S. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 2020; 15:1686-1700. [PMID: 32209773 PMCID: PMC7437585 DOI: 10.4103/1673-5374.276340] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Currently, there is no effective strategy to promote functional recovery after a spinal cord injury. Collagen scaffolds can not only provide support and guidance for axonal regeneration, but can also serve as a bridge for nerve regeneration at the injury site. They can additionally be used as carriers to retain mesenchymal stem cells at the injury site to enhance their effectiveness. Hence, we hypothesized that transplanting human umbilical cord-mesenchymal stem cells on collagen scaffolds would enhance healing following acute complete spinal cord injury. Here, we test this hypothesis through animal studies and a phase I clinical trial. (1) Animal experiments: Models of completely transected spinal cord injury were established in rats and canines by microsurgery. Mesenchymal stem cells derived from neonatal umbilical cord tissue were adsorbed onto collagen scaffolds and surgically implanted at the injury site in rats and canines; the animals were observed after 1 week–6 months. The transplantation resulted in increased motor scores, enhanced amplitude and shortened latency of the motor evoked potential, and reduced injury area as measured by magnetic resonance imaging. (2) Phase I clinical trial: Forty patients with acute complete cervical injuries were enrolled at the Characteristic Medical Center of Chinese People’s Armed Police Force and divided into two groups. The treatment group (n = 20) received collagen scaffolds loaded with mesenchymal stem cells derived from neonatal umbilical cord tissues; the control group (n = 20) did not receive the stem-cell loaded collagen implant. All patients were followed for 12 months. In the treatment group, the American Spinal Injury Association scores and activities of daily life scores were increased, bowel and urinary functions were recovered, and residual urine volume was reduced compared with the pre-treatment baseline. Furthermore, magnetic resonance imaging showed that new nerve fiber connections were formed, and diffusion tensor imaging showed that electrophysiological activity was recovered after the treatment. No serious complication was observed during follow-up. In contrast, the neurological functions of the patients in the control group were not improved over the follow-up period. The above data preliminarily demonstrate that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen scaffold can promote the recovery of neurological function after acute spinal cord injury. In the future, these results need to be confirmed in a multicenter, randomized controlled clinical trial with a larger sample size. The clinical trial was approved by the Ethics Committee of the Characteristic Medical Center of Chinese People’s Armed Police Force on February 3, 2016 (approval No. PJHEC-2016-A8). All animal experiments were approved by the Ethics Committee of the Characteristic Medical Center of Chinese People’s Armed Police Force on May 20, 2015 (approval No. PJHEC-2015-D5).
Collapse
Affiliation(s)
- Wu-Sheng Deng
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Bing Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Xiao-Yin Liu
- Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Hui-You Xu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Heng-Yuan Shi
- Clinical School of Medicine, Logistics University of People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, characteristic medical center of Chinese people's armed police force, Tianjin, China
| |
Collapse
|
20
|
van Den Hauwe L, Sundgren PC, Flanders AE. Spinal Trauma and Spinal Cord Injury (SCI). IDKD SPRINGER SERIES 2020. [DOI: 10.1007/978-3-030-38490-6_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|