1
|
Liu K, Gao X, Ou L, Tang Z, Zhao H, Hua S, Xiong Y, Zhang L, Kuang J. Acupuncture for the treatment of anxiety and depression in patients with spinal cord injury: A study protocol for systematic review and meta analysis. Medicine (Baltimore) 2024; 103:e39701. [PMID: 39312333 PMCID: PMC11419492 DOI: 10.1097/md.0000000000039701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Spinal cord injury patients frequently suffer from anxiety and depression, which can seriously affect their quality of life and recovery. Acupuncture, as a traditional Chinese therapy, has been used to treat anxiety and depression for more than 2000 years. The aim is to evaluate the clinical efficacy of acupuncture in the treatment of anxiety and depression in spinal cord injury patients. METHODS The literature on acupuncture treating anxiety and depression in patients with spinal cord injury in PubMed, Embase, Cochrane Library, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Chinese Scientific Journal Data, and Wanfang data were searched through computers from the establishment of the database to May 2024. In the study, the Cochrane tool for assessing the risk of bias was used and the meta-analyses were carried out using the software package Review Manager 5.4. RESULTS Ten trials were included in this systematic review, with 361 cases in the experimental group and 355 cases in the control group. Meta-analysis showed that compared with conventional treatment, acupuncture combined with conventional treatment was beneficial in improving the total clinical efficacy (odds ratio = 3.55 [95% confidence interval {CI}: 1.34-9.37], P < .001). We found acupuncture-assisted therapy could be beneficial in improving the Modified Barthel Index (MD = 10.48 [95% CI: 4.78-16.19], P < .001) and reducing anxiety or depression scores (such as the Self-Rating Anxiety Scale [MD = -6.08 {95% CI: -6.85 to -5.30}, P < .001]; reducing the Self-Rating Depression Scale [MD = -6.01 {95% CI: -6.95 to -5.07}, P < .001]). In addition, the study showed that the application of acupuncture treatment could improve 5-hydroxytryptamine compared to control group (MD = 44.99 [95% CI: 40.04-49.95], P < .001) and reduce TNF-α compared to control group (MD = -7.78 [95% CI: -8.73 to -6.83], P < .001). CONCLUSION Acupuncture could be used as a complementary therapy to reduce anxiety and depression in spinal cord injury patients. Further original and high-quality research is needed to verify the conclusions of this study.
Collapse
Affiliation(s)
- Ke Liu
- Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyong Gao
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Liang Ou
- Hunan Academy of Chinese Medicine, Changsha, China
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Zuyu Tang
- Hunan University of Chinese Medicine, Changsha, China
| | - Haoming Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Sheng Hua
- Hunan University of Chinese Medicine, Changsha, China
| | - Yixiao Xiong
- Hunan University of Chinese Medicine, Changsha, China
| | - Le Zhang
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianjun Kuang
- Hunan Academy of Chinese Medicine, Changsha, China
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Stefanov A, Brakel K, Rau J, Joseph RM, Guice C, Araguz K, Hemphill A, Madry J, Irion A, Dash S, Souza KA, Hook MA. Depression-like behavior is associated with deficits in cognition and hippocampal neurogenesis in a subset of spinally contused male, but not female, rats. Brain Behav Immun 2024; 123:270-287. [PMID: 39288895 DOI: 10.1016/j.bbi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
Collapse
Affiliation(s)
- Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843.
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Rose M Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Corey Guice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Jessica Madry
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Andrew Irion
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Swapnil Dash
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
3
|
Javeed S, Zhang JK, Greenberg JK, Botterbush K, Benedict B, Plog B, Gupta VP, Dibble CF, Khalifeh JM, Wen H, Chen Y, Park Y, Belzberg A, Tuffaha S, Burks SS, Levi AD, Zager EL, Faraji AH, Mahan MA, Midha R, Wilson TJ, Juknis N, Ray WZ. Impact of Upper Limb Motor Recovery on Functional Independence After Traumatic Low Cervical Spinal Cord Injury. J Neurotrauma 2024; 41:1211-1222. [PMID: 38062795 DOI: 10.1089/neu.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Cervical spinal cord injury (SCI) causes devastating loss of upper limb function and independence. Restoration of upper limb function can have a profound impact on independence and quality of life. In low-cervical SCI (level C5-C8), upper limb function can be restored via reinnervation strategies such as nerve transfer surgery. The translation of recovered upper limb motor function into functional independence in activities of daily living (ADLs), however, remains unknown in low cervical SCI (i.e., tetraplegia). The objective of this study was to evaluate the association of patterns in upper limb motor recovery with functional independence in ADLs. This will then inform prioritization of reinnervation strategies focused to maximize function in patients with tetraplegia. This retrospective study performed a secondary analysis of patients with low cervical (C5-C8) enrolled in the SCI Model Systems (SCIMS) database. Baseline neurological examinations and their association with functional independence in major ADLs-i.e., eating, bladder management, and transfers (bed/wheelchair/chair)-were evaluated. Motor functional recovery was defined as achieving motor strength, in modified research council (MRC) grade, of ≥ 3 /5 at one year from ≤ 2/5 at baseline. The association of motor function recovery with functional independence at one-year follow-up was compared in patients with recovered elbow flexion (C5), wrist extension (C6), elbow extension (C7), and finger flexion (C8). A multi-variable logistic regression analysis, adjusting for known factors influencing recovery after SCI, was performed to evaluate the impact of motor function at one year on a composite outcome of functional independence in major ADLs. Composite outcome was defined as functional independence measure score of 6 or higher (complete independence) in at least two domains among eating, bladder management, and transfers. Between 1992 and 2016, 1090 patients with low cervical SCI and complete neurological/functional measures were included. At baseline, 67% of patients had complete SCI and 33% had incomplete SCI. The majority of patients were dependent in eating, bladder management, and transfers. At one-year follow-up, the largest proportion of patients who recovered motor function in finger flexion (C8) and elbow extension (C7) gained independence in eating, bladder management, and transfers. In multi-variable analysis, patients who had recovered finger flexion (C8) or elbow extension (C7) had higher odds of gaining independence in a composite of major ADLs (odds ratio [OR] = 3.13 and OR = 2.87, respectively, p < 0.001). Age 60 years (OR = 0.44, p = 0.01), and complete SCI (OR = 0.43, p = 0.002) were associated with reduced odds of gaining independence in ADLs. After cervical SCI, finger flexion (C8) and elbow extension (C7) recovery translate into greater independence in eating, bladder management, and transfers. These results can be used to design individualized reinnervation plans to reanimate upper limb function and maximize independence in patients with low cervical SCI.
Collapse
Affiliation(s)
- Saad Javeed
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Justin K Zhang
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Jacob K Greenberg
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Kathleen Botterbush
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Braeden Benedict
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Benjamin Plog
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Vivek P Gupta
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Christopher F Dibble
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| | - Jawad M Khalifeh
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Huacong Wen
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuying Chen
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, Missouri, USA
| | - Allan Belzberg
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephen Shelby Burks
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Allan D Levi
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Eric L Zager
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Mark A Mahan
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Rajiv Midha
- Department of Clinical Neurosciences, University of Calgary, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Thomas J Wilson
- Department of Neurosurgery, Stanford University, Palo Alto, California, USA
| | - Neringa Juknis
- Physical Medicine and Rehabilitation, Washington University, St. Louis, Missouri, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury. Exp Neurol 2024; 375:114725. [PMID: 38365132 PMCID: PMC10981559 DOI: 10.1016/j.expneurol.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin.
| |
Collapse
|
5
|
Liu S, Wu Q, Wang L, Xing C, Guo J, Li B, Ma H, Zhong H, Zhou M, Zhu S, Zhu R, Ning G. Coordination function index: A novel indicator for assessing hindlimb locomotor recovery in spinal cord injury rats based on catwalk gait parameters. Behav Brain Res 2024; 459:114765. [PMID: 37992973 DOI: 10.1016/j.bbr.2023.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In preclinical studies of spinal cord injury (SCI), behavioral assessments are crucial for evaluating treatment effectiveness. Commonly used methods include Basso, Beattie, Bresnahan (BBB) score and the Louisville swim scale (LSS), relying on subjective observations. The CatWalk automated gait analysis system is also widely used in SCI studies, providing extensive gait parameters from footprints. However, these parameters are often used independently or combined simply without utilizing the vast amount of data provided by CatWalk. Therefore, it is necessary to develop a novel approach encompassing multiple CatWalk parameters for a comprehensive and objective assessment of locomotor function. In this work, we screened 208 CatWalk XT gait parameters and identified 38 suitable for assessing hindlimb motor function recovery in a rat thoracic contusion SCI model. Exploratory factor analysis was used to reveal structural relationships among these parameters. Weighted scores for Coordination effectively differentiated hindlimb motor function levels, termed as the Coordinated Function Index (CFI). CFI showed high reliability, exhibiting high correlations with BBB scores, LSS, and T2WI lesion area. Finally, we simplified CFI based on factor loadings and correlation analysis, obtaining a streamlined version with reliable assessment efficacy. In conclusion, we developed a systematic assessment indicator utilizing multiple CatWalk parameters to objectively evaluate hindlimb motor function recovery in rats after thoracic contusion SCI.
Collapse
Affiliation(s)
- Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Junrui Guo
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Baicao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mi Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
6
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6J mice on recovery after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557980. [PMID: 37745393 PMCID: PMC10516041 DOI: 10.1101/2023.09.15.557980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| |
Collapse
|
7
|
Routkevitch D, Soulé Z, Kats N, Baca E, Hersh AM, Kempski-Leadingham KM, Menta AK, Bhimreddy M, Jiang K, Davidar AD, Smit C, Theodore N, Thakor NV, Manbachi A. Non-contrast ultrasound image analysis for spatial and temporal distribution of blood flow after spinal cord injury. Sci Rep 2024; 14:714. [PMID: 38184676 PMCID: PMC10771432 DOI: 10.1038/s41598-024-51281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Ultrasound technology can provide high-resolution imaging of blood flow following spinal cord injury (SCI). Blood flow imaging may improve critical care management of SCI, yet its duration is limited clinically by the amount of contrast agent injection required for high-resolution, continuous monitoring. In this study, we aim to establish non-contrast ultrasound as a clinically translatable imaging technique for spinal cord blood flow via comparison to contrast-based methods and by measuring the spatial distribution of blood flow after SCI. A rodent model of contusion SCI at the T12 spinal level was carried out using three different impact forces. We compared images of spinal cord blood flow taken using both non-contrast and contrast-enhanced ultrasound. Subsequently, we processed the images as a function of distance from injury, yielding the distribution of blood flow through space after SCI, and found the following. (1) Both non-contrast and contrast-enhanced imaging methods resulted in similar blood flow distributions (Spearman's ρ = 0.55, p < 0.0001). (2) We found an area of decreased flow at the injury epicenter, or umbra (p < 0.0001). Unexpectedly, we found increased flow at the periphery, or penumbra (rostral, p < 0.05; caudal, p < 0.01), following SCI. However, distal flow remained unchanged, in what is presumably unaffected tissue. (3) Finally, tracking blood flow in the injury zones over time revealed interesting dynamic changes. After an initial decrease, blood flow in the penumbra increased during the first 10 min after injury, while blood flow in the umbra and distal tissue remained constant over time. These results demonstrate the viability of non-contrast ultrasound as a clinical monitoring tool. Furthermore, our surprising observations of increased flow in the injury periphery pose interesting new questions about how the spinal cord vasculature reacts to SCI, with potentially increased significance of the penumbra.
Collapse
Affiliation(s)
- Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zoe Soulé
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Kats
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emily Baca
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew M Hersh
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelley M Kempski-Leadingham
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arjun K Menta
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Jiang
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantin Smit
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Amir Manbachi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Zheng Y, Shao S, Zhang Y, Yuan S, Xing Y, Wang J, Qi X, Cui K, Tong J, Liu F, Cui S, Wan Y, Yi M. HCN2 Channels in the Ventral Hippocampal CA1 Regulate Nociceptive Hypersensitivity in Mice. Int J Mol Sci 2023; 24:13823. [PMID: 37762124 PMCID: PMC10531460 DOI: 10.3390/ijms241813823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Peking Union Medical College (PUMC), Beijing 100101, China;
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yuanwei Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| |
Collapse
|
9
|
Lee SE, Greenough EK, Fonken LK, Gaudet AD. Spinal cord injury in mice amplifies anxiety: A novel light-heat conflict test exposes increased salience of anxiety over heat. Exp Neurol 2023; 364:114382. [PMID: 36924982 PMCID: PMC10874685 DOI: 10.1016/j.expneurol.2023.114382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Spinal cord injury (SCI) predisposes individuals to anxiety and chronic pain. Anxiety- and pain-like behavior after SCI can be tested in rodents, yet commonly used tests assess one variable and may not replicate effects of SCI or sex differences seen in humans. Thus, novel preclinical tests should be optimized to better evaluate behaviors relating to anxiety and pain. Here, we use our newly developed conflict test - the Thermal Increments Dark-Light (TIDAL) test - to explore how SCI affects anxiety- vs. pain-like behavior, and whether sex affects post-SCI behavior. The TIDAL conflict test consists of two plates connected by a walkway; one plate remains illuminated and at an isothermic temperature, whereas the other plate is dark but is heated incrementally to aversive temperatures. A control mice thermal place preference test was also performed in which both plates are illuminated. Female and male mice received moderate T9 contusion SCI or remained uninjured. At 7 days post-operative (dpo), mice with SCI increased dark plate preference throughout the TIDAL conflict test compared to uninjured mice. SCI increased dark plate preference for both sexes, although female (vs. male) mice remained on the heated-dark plate to higher temperatures. Mice with SCI that repeated TIDAL at 7 and 21 dpo showed reduced preference for the dark-heated plate at 21 dpo. Overall, in female and male mice, SCI enhances the salience of anxiety (vs. heat sensitivity). The TIDAL conflict test meets a need for preclinical anxiety- and pain-related tests that recapitulate the human condition; thus, future rodent behavioral studies should incorporate TIDAL or other conflict tests to help understand and treat neurologic disorders.
Collapse
Affiliation(s)
- Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, 108 E. Dean Keeton St, Mail Stop A800, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| | - Emily K Greenough
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, 108 E. Dean Keeton St, Mail Stop A800, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton St, Stop C0875 BME 3.510, Austin, TX 78712, USA.
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, 108 E. Dean Keeton St, Mail Stop A800, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Saruta K, Fukutoku T, Kumagai G, Nagaoki T, Tsukuda M, Nitobe Y, Wada K, Asari T, Fujita T, Sasaki I, Nikaido Y, Shimoyama S, Ueno S, Ishibashi Y. Intraperitoneal Administration of Etizolam Improves Locomotor Function in Mice After Spinal Cord Injury. Neurotrauma Rep 2023; 4:82-96. [PMID: 36874147 PMCID: PMC9983139 DOI: 10.1089/neur.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Neuroinflammation occurs in the acute phase of spinal cord injury (SCI) and inhibits neural regeneration. In mouse models, etizolam (ETZ) is a strong anxiolytic with unclear effects on SCI. This study investigated the effects of short-term administration of ETZ on neuroinflammation and behavior in mice after SCI. We administrated an ETZ (0.5 mg/kg) daily intraperitoneal injection from the day after SCI for 7 days. Mice were randomly divided into three groups (sham group: only laminectomy, saline group, and ETZ group). Inflammatory cytokine concentrations in the injured spinal cord epicenter were measured using an enzyme-linked immunosorbent assay on day 7 after SCI to evaluate spinal cord inflammation in the acute phase. Behavior analysis was performed the day before surgery and on days 7, 14, 28, and 42 after surgery. The behavioral analysis included anxiety-like behavior using the open field test, locomotor function using the Basso Mouse Scale, and sensory function using the mechanical and heat test. Inflammatory cytokine concentrations were significantly lower in the ETZ group than in the saline group in the acute phase after spinal surgery. After SCI, anxiety-like behaviors and sensory functions were comparable between the ETZ and saline groups. ETZ administration reduced neuroinflammation in the spinal cord and improved locomotor function. Gamma-amino butyric acid type A receptor stimulants may be effective therapeutic agents for patients with SCI.
Collapse
Affiliation(s)
- Kenya Saruta
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihide Nagaoki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Manami Tsukuda
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Isamu Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
11
|
Osimanjiang W, Allgood JE, Van Sandt RL, Burns DT, Bushman JS. Sexual Dimorphism in Lesion Size and Sensorimotor Responses Following Spinal Cord Injury. Front Neurol 2022; 13:925797. [PMID: 36994113 PMCID: PMC10041393 DOI: 10.3389/fneur.2022.925797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder, which impacts the lives of millions of people worldwide with no clinically standardized treatment. Both pro-recovery and anti-recovery factors contribute to the overall outcome after the initial SCI. Sex is emerging as an important variable, which can affect recovery post-SCI. Contusion SCI at T10 was generated in male and female rats. Open-field Basso, Beattie, Bresnahan (BBB) behavioral test, Von Frey test, and CatWalk gate analysis were performed. Histological analysis was performed at the 45-day post-SCI end point. Male/female differences in sensorimotor function recovery, lesion size, and the recruitment of immune cells to the lesion area were measured. A group of males with less severe injuries was included to compare the outcomes for severity. Our results show that both sexes with the same injury level plateaued at a similar final score for locomotor function. Males in the less severe injury group recovered faster and plateaued at a higher BBB score compared to the more severe injury group. Von Frey tests show faster recovery of sensory function in females compared to both male groups. All three groups exhibited reduced mechanical response thresholds after SCI. The lesion area was significantly larger in the male group with severe injury than in females, as well as in males of less severe injury. No significant differences in immune cell recruitment were identified when comparing the three groups. The faster sensorimotor recovery and significantly smaller lesion area in females potentially indicate that neuroprotection against the secondary injury is a likely reason for sex-dependent differences in functional outcomes after SCI.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - JuliAnne E. Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - Rae L. Van Sandt
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Daniel T. Burns
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| | - Jared S. Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
- *Correspondence: Jared S. Bushman
| |
Collapse
|
12
|
Li Y, Ritzel RM, Lei Z, Cao T, He J, Faden AI, Wu J. Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain Behav Immun 2022; 101:1-22. [PMID: 34954073 PMCID: PMC8885910 DOI: 10.1016/j.bbi.2021.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Baine RE, Johnston DT, Strain MM, Henwood MK, Davis JA, Reynolds JA, Giles ED, Grau JW. Noxious Stimulation Induces Acute Hemorrhage and Impairs Long-Term Recovery after Spinal Cord Injury (SCI) in Female Rats: Evidence Estrous Cycle May Have a Modulatory Effect. Neurotrauma Rep 2022; 3:70-86. [PMID: 35112109 PMCID: PMC8804264 DOI: 10.1089/neur.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models—intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.
Collapse
Affiliation(s)
- Rachel E. Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - David T. Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science, San Antonio, Texas, USA
| | - Melissa K. Henwood
- Department of Neuroscience, Cell Biology, Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob A. Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Joshua A. Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Delarue Q, Robac A, Massardier R, Marie JP, Guérout N. Comparison of the effects of two therapeutic strategies based on olfactory ensheathing cell transplantation and repetitive magnetic stimulation after spinal cord injury in female mice. J Neurosci Res 2021; 99:1835-1849. [PMID: 33960512 PMCID: PMC8359979 DOI: 10.1002/jnr.24836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition, which leads to a permanent loss of functions below the injury site. The events which take place after SCI are characterized by cellular death, release of inhibitory factors, and inflammation. Many therapies have been studied to cure SCI, among them magnetic stimulation aims to reduce the secondary damages in particular by decreasing apoptosis, while, cellular transplantation promotes neuroregeneration by enhancing axonal regrowth. In the present study, we compared individually primary olfactory ensheathing cell (OEC) transplantation and repetitive trans‐spinal magnetic stimulation (rTSMS) and then, we combined these two therapeutic approaches on tissue repair and functional recovery after SCI. To do so, SCIs were performed at Th10 level on female C57BL/6 mice, which were randomized into four groups: SCI, SCI + primary bOECs, SCI + STM, SCI + primary bulbar olfactory ensheathing cells (bOECs) + stimulation (STM). On these animals bioluminescence, immunohistological, and behavioral experiments were performed after SCI. Our results show that rTSMS has beneficial effect on the modulation of spinal scar by reducing fibrosis, demyelination, and microglial cell activation and by increasing the astroglial component of the scar, while, primary bOEC transplantation decreases microglial reactivity. At the opposite, locotronic experiments show that both treatments induce functional recovery. We did not observed any additional effect by combining the two therapeutic approaches. Taken together, the present study indicates that primary bOEC transplantation and rTSMS treatment act through different mechanisms after SCI to induce functional recovery. In our experimental paradigm, the combination of the two therapies does not induce any additional benefit.
Collapse
Key Words
- RRID:AB_10563302: PDGFRβ, Abcam, ab91066
- RRID:AB_10643424: PE, poly4064, BioLegend, 406408
- RRID:AB_2313568: Jackson ImmunoResearch, 711-166-152
- RRID:AB_2340667: Jackson ImmunoResearch, 712-165-153
- RRID:AB_2340812: Jackson ImmunoResearch, 715-165-140
- RRID:AB_2715913: Alexa 488, MRG2b-85, BioLegend
- RRID:AB_306827: p75, Abcam, ab8874
- RRID:AB_476889: GFAP Cy3-conjugated Sigma-Aldrich, C9205
- RRID:AB_777165:P DGFRβAbcam ab32570
- RRID:AB_839504: Iba1, Wako, 019-19741
- RRID:AB_94975: MBP, Millipore, MAB386
- RRID:IMSR_JAX:008450: L2G85Chco+/+ (FVB-Tg(CAG-luc,-GFP)L2G85Chco/J)
- glial scar
- magnetic stimulation
- olfactory ensheathing cells and neuroregeneration
- rehabilitation
- spinal cord injury
Collapse
Affiliation(s)
- Quentin Delarue
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Amandine Robac
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Romane Massardier
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Paul Marie
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Guérout
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
16
|
Wei GZ, Saraswat Ohri S, Khattar NK, Listerman AW, Doyle CH, Andres KR, Karuppagounder SS, Ratan RR, Whittemore SR, Hetman M. Hypoxia-inducible factor prolyl hydroxylase domain (PHD) inhibition after contusive spinal cord injury does not improve locomotor recovery. PLoS One 2021; 16:e0249591. [PMID: 33819286 PMCID: PMC8021188 DOI: 10.1371/journal.pone.0249591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that involves both primary and secondary tissue loss. Various cytotoxic events including hypoxia, hemorrhage and blood lysis, bioenergetic failure, oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation contribute to secondary injury. The HIF prolyl hydroxylase domain (PHD/EGLN) family of proteins are iron-dependent, oxygen-sensing enzymes that regulate the stability of hypoxia inducible factor-1α (HIF-1α) and also mediate oxidative stress caused by free iron liberated from the lysis of blood. PHD inhibition improves outcome after experimental intracerebral hemorrhage (ICH) by reducing activating transcription factor 4 (ATF4)-driven neuronal death. As the ATF4-CHOP (CCAAT-enhancer-binding protein homologous protein) pathway plays a role in the pathogenesis of contusive SCI, we examined the effects of PHD inhibition in a mouse model of moderate T9 contusive SCI in which white matter damage is the primary driver of locomotor dysfunction. Pharmacological inhibition of PHDs using adaptaquin (AQ) moderately lowers acute induction of Atf4 and Chop mRNAs and prevents the acute decline of oligodendrocyte (OL) lineage mRNAs, but does not improve long-term recovery of hindlimb locomotion or increase chronic white matter sparing. Conditional genetic ablation of all three PHD isoenzymes in OLs did not affect Atf4, Chop or OL mRNAs expression levels, locomotor recovery, and white matter sparing after SCI. Hence, PHDs may not be suitable targets to improve outcomes in traumatic CNS pathologies that involve acute white matter injury.
Collapse
Affiliation(s)
- George Z Wei
- University of Louisville School of Medicine, Louisville, Kentucky, United States of America.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Nicolas K Khattar
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Adam W Listerman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Catherine H Doyle
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Saravanan S Karuppagounder
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY, United States of America.,Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Rajiv R Ratan
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY, United States of America.,Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Scott R Whittemore
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Michal Hetman
- University of Louisville School of Medicine, Louisville, Kentucky, United States of America.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| |
Collapse
|
17
|
Ehsanipour A, Sathialingam M, Rad LM, de Rutte J, Bierman RD, Liang J, Xiao W, Di Carlo D, Seidlits SK. Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioeng 2021; 5:016104. [PMID: 33728392 PMCID: PMC7946441 DOI: 10.1063/5.0035291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Biomaterials are being developed as therapeutics for spinal cord injury (SCI) that can stabilize and bridge acute lesions and mediate the delivery of transgenes, providing a localized and sustained reservoir of regenerative factors. For clinical use, direct injection of biomaterial scaffolds is preferred to enable conformation to unique lesions and minimize tissue damage. While an interconnected network of cell-sized macropores is necessary for rapid host cell infiltration into-and thus integration of host tissue with-implanted scaffolds, injectable biomaterials have generally suffered from a lack of control over the macrostructure. As genetic vectors have short lifetimes in vivo, rapid host cell infiltration into scaffolds is a prerequisite for efficient biomaterial-mediated delivery of transgenes. We present scaffolds that can be injected and assembled in situ from hyaluronic acid (HA)-based, spherical microparticles to form scaffolds with a network of macropores (∼10 μm). The results demonstrate that addition of regularly sized macropores to traditional hydrogel scaffolds, which have nanopores (∼10 nm), significantly increases the expression of locally delivered transgene to the spinal cord after a thoracic injury. Maximal cell and axon infiltration into scaffolds was observed in scaffolds with more regularly sized macropores. The delivery of lentiviral vectors encoding the brain-derived neurotrophic factor (BDNF), but not neurotrophin-3, from these scaffolds further increased total numbers and myelination of infiltrating axons. Modest improvements to the hindlimb function were observed with BDNF delivery. The results demonstrate the utility of macroporous and injectable HA scaffolds as a platform for localized gene therapies after SCI.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Laila M Rad
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Rebecca D Bierman
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
18
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Li Y, Ritzel RM, Khan N, Cao T, He J, Lei Z, Matyas JJ, Sabirzhanov B, Liu S, Li H, Stoica BA, Loane DJ, Faden AI, Wu J. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Am J Cancer Res 2020; 10:11376-11403. [PMID: 33052221 PMCID: PMC7545988 DOI: 10.7150/thno.49199] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.
Collapse
|