1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
2
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
3
|
Kellaway SC, Ullrich MM, Dziemidowicz K. Electrospun drug-loaded scaffolds for nervous system repair. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1965. [PMID: 38740385 DOI: 10.1002/wnan.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug-loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug-loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug-loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Simon C Kellaway
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Mathilde M Ullrich
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Karolina Dziemidowicz
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
4
|
Saksena J, Hamilton AE, Gilbert RJ, Zuidema JM. Nanomaterial payload delivery to central nervous system glia for neural protection and repair. Front Cell Neurosci 2023; 17:1266019. [PMID: 37941607 PMCID: PMC10628439 DOI: 10.3389/fncel.2023.1266019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Central nervous system (CNS) glia, including astrocytes, microglia, and oligodendrocytes, play prominent roles in traumatic injury and degenerative disorders. Due to their importance, active pharmaceutical ingredients (APIs) are being developed to modulate CNS glia in order to improve outcomes in traumatic injury and disease. While many of these APIs show promise in vitro, the majority of APIs that are systemically delivered show little penetration through the blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) and into the CNS, rendering them ineffective. Novel nanomaterials are being developed to deliver APIs into the CNS to modulate glial responses and improve outcomes in injury and disease. Nanomaterials are attractive options as therapies for central nervous system protection and repair in degenerative disorders and traumatic injury due to their intrinsic capabilities in API delivery. Nanomaterials can improve API accumulation in the CNS by increasing permeation through the BBB of systemically delivered APIs, extending the timeline of API release, and interacting biophysically with CNS cell populations due to their mechanical properties and nanoscale architectures. In this review, we present the recent advances in the fields of both locally implanted nanomaterials and systemically administered nanoparticles developed for the delivery of APIs to the CNS that modulate glial activity as a strategy to improve outcomes in traumatic injury and disease. We identify current research gaps and discuss potential developments in the field that will continue to translate the use of glia-targeting nanomaterials to the clinic.
Collapse
Affiliation(s)
- Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Adelle E. Hamilton
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Albany Stratton Veterans Affairs Medical Center, Albany, NY, United States
| | - Jonathan M. Zuidema
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
5
|
Moretti M, Caraffi R, Lorenzini L, Ottonelli I, Sannia M, Alastra G, Baldassarro VA, Giuliani A, Duskey JT, Cescatti M, Ruozi B, Aloe L, Vandelli MA, Giardino L, Tosi G, Calzà L. "Combo" Multi-Target Pharmacological Therapy and New Formulations to Reduce Inflammation and Improve Endogenous Remyelination in Traumatic Spinal Cord Injury. Cells 2023; 12:cells12091331. [PMID: 37174731 PMCID: PMC10177268 DOI: 10.3390/cells12091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.
Collapse
Affiliation(s)
- Marzia Moretti
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giuseppe Alastra
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Alessandro Giuliani
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luigi Aloe
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
6
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
7
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
8
|
Dai Y, Lu T, Shao M, Lyu F. Recent advances in PLLA-based biomaterial scaffolds for neural tissue engineering: Fabrication, modification, and applications. Front Bioeng Biotechnol 2022; 10:1011783. [PMID: 36394037 PMCID: PMC9663477 DOI: 10.3389/fbioe.2022.1011783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Repairing and regenerating injured neural tissue remains a worldwide challenge. Tissue engineering (TE) has been highlighted as a potential solution to provide functional substitutes for damaged organs or tissue. Among the biocompatible and biodegradable materials, poly-L-lactic-acid (PLLA) has been widely investigated in the TE field because of its tunable mechanical properties and tailorable surface functionalization. PLLA-based biomaterials can be engineered as scaffolds that mimic neural tissue extracellular matrix and modulate inflammatory responses. With technological advances, PLLA-based scaffolds can also have well-controlled three-dimensional sizes and structures to facilitate neurite extension. Furthermore, PLLA-based scaffolds have the potential to be used as drug-delivery carriers with controlled release. Moreover, owing to the good piezoelectric properties and capacity to carry conductive polymers, PLLA-based scaffolds can be combined with electrical stimulation to maintain stemness and promote axonal guidance. This mini-review summarizes and discusses the fabrication and modification techniques utilized in the PLLA-based biomaterial scaffolds for neural TE. Recent applications in peripheral nerve and spinal cord regeneration are also presented, and it is hoped that this will guide the future development of more effective and multifunctional PLLA-based nerve scaffolds.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingwei Lu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Minghao Shao, ; Feizhou Lyu,
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Minghao Shao, ; Feizhou Lyu,
| |
Collapse
|
9
|
Baldassarro VA, Stanzani A, Giardino L, Calzà L, Lorenzini L. Neuroprotection and neuroregeneration: roles for the white matter. Neural Regen Res 2022; 17:2376-2380. [PMID: 35535874 PMCID: PMC9120696 DOI: 10.4103/1673-5374.335834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood.
Collapse
Affiliation(s)
| | - Agnese Stanzani
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna; Fondazione IRET, Ozzano Emilia, Italy
| | - Laura Calzà
- Fondazione IRET, Ozzano Emilia; Department of Pharmacy and Biotechnology, University of Bologna, Bologna; Montecatone Rehabilitation Institute, Imola, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
11
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
12
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Design and In Vitro Study of a Dual Drug-Loaded Delivery System Produced by Electrospinning for the Treatment of Acute Injuries of the Central Nervous System. Pharmaceutics 2021; 13:pharmaceutics13060848. [PMID: 34201089 PMCID: PMC8227370 DOI: 10.3390/pharmaceutics13060848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95–1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells—OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.
Collapse
|
14
|
Chakraborty A, Ciciriello AJ, Dumont CM, Pearson RM. Nanoparticle-Based Delivery to Treat Spinal Cord Injury-a Mini-review. AAPS PharmSciTech 2021; 22:101. [PMID: 33712968 PMCID: PMC8733957 DOI: 10.1208/s12249-021-01975-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
There is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord. The objective of this mini-review is to highlight the physiological challenges and cell types available for modulation and discuss several promising advancements using NPs to improve SCI treatment. We will focus our discussion on recent innovative approaches in NP drug delivery and how the implementation of multifactorial approaches to address the proinflammatory and complex immune dysfunction in SCI offers significant potential to improve outcomes in SCI.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland, 21201, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida, 33156, USA
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida, 33136, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida, 33156, USA.
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida, 33136, USA.
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland, 21201, USA.
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Maryland, 21201, Baltimore, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
15
|
Li JJ, Liu H, Zhu Y, Yan L, Liu R, Wang G, Wang B, Zhao B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:79-100. [PMID: 33267667 DOI: 10.1089/ten.teb.2020.0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Haifeng Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Ruxing Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Bin Wang
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Zhao
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
16
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
17
|
Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, Fu WL, Wu AM. Endocrine Therapy for the Functional Recovery of Spinal Cord Injury. Front Neurosci 2020; 14:590570. [PMID: 33390881 PMCID: PMC7773784 DOI: 10.3389/fnins.2020.590570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of physical disability and leads to patient dissatisfaction with their quality of life. Patients with SCI usually exhibit severe clinical symptoms, including sensory and motor dysfunction below the injured levels, paraplegia, quadriplegia and urinary retention, which can exacerbate the substantial medical and social burdens. The major pathological change observed in SCI is inflammatory reaction, which induces demyelination, axonal degeneration, and the apoptosis and necrosis of neurons. Traditional medical treatments are mainly focused on the recovery of motor function and prevention of complications. To date, numerous studies have been conducted to explore the cellular and molecular mechanism of SCI and have proposed lots of effective treatments, but the clinical applications are still limited due to the complex pathogenesis and poor prognosis after SCI. Endocrine hormones are kinds of molecules that are synthesized by specialized endocrine organs and can participate in the regulation of multiple physiological activities, and their protective effects on several disorders have been widely discussed. In addition, many studies have identified that endocrine hormones can promote nerve regeneration and functional recovery in individuals with central nervous system diseases. Therefore, studies investigating the clinical applications of endocrine hormones as treatments for SCI are necessary. In this review, we described the neuroprotective roles of several endocrine hormones in SCI; endocrine hormone administration reduces cell death and promotes functional repair after SCI. We also proposed novel therapies for SCI.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wen-Xian Zhou
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jin-Feng Huang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuan-Qi Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-Min Wu
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study. Int J Mol Sci 2020; 21:ijms21239037. [PMID: 33261156 PMCID: PMC7729583 DOI: 10.3390/ijms21239037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Although, biomarkers are regarded as an important tool for monitoring injury severity and treatment efficacy, and for predicting clinical evolution in many neurological diseases and disorders including spinal cord injury, there is still a lack of reliable biomarkers for the assessment of clinical course and patient outcome. In this study, a biological dataset of 60 cytokines/chemokines, growth factorsm and intracellular and extracellular matrix proteins, analyzed in CSF within 24 h of injury, was used for correlation analysis with the clinical dataset of the same patients. A heat map was generated of positive and negative correlations between biomarkers and clinical rating scale scores at discharge, and between biomarkers and changes in clinical scores during the observation period. Using very stringent statistical criteria, we found 10 molecules which correlated with clinical scores at discharge, and five molecules, which correlated with changes in clinical scores. The proposed methodology may be useful for generating hypotheses regarding "predictive" and "treatment effectiveness" biomarkers, thereby suggesting potential candidates for disease-modifying therapies using a "bed-to-bench" approach.
Collapse
|