1
|
Armstrong RC, Sullivan GM, Perl DP, Rosarda JD, Radomski KL. White matter damage and degeneration in traumatic brain injury. Trends Neurosci 2024; 47:677-692. [PMID: 39127568 DOI: 10.1016/j.tins.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.
Collapse
Affiliation(s)
- Regina C Armstrong
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA.
| | - Genevieve M Sullivan
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Defense - Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
| | - Jessica D Rosarda
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kryslaine L Radomski
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
2
|
Visser K, de Koning ME, Ciubotariu D, Kok MGJ, Sibeijn-Kuiper AJ, Bourgonje AR, van Goor H, van der Naalt J, van der Horn HJ. An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury. J Neurol 2024; 271:1985-1998. [PMID: 38157029 DOI: 10.1007/s00415-023-12146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood-based biomarkers and advanced neuroimaging modalities such as magnetic resonance spectroscopy (MRS) or diffusion tensor imaging (DTI) have enhanced our understanding of the pathophysiology of mild traumatic brain injury (mTBI). However, there is limited published data on how blood biomarkers relate to neuroimaging biomarkers post-mTBI. METHODS To investigate this, 30 patients with mTBI and 21 healthy controls were enrolled. Data was collected at two timepoints postinjury: acute, < 24 h, (blood) and subacute, four-to-six weeks, (blood and imaging). Interleukin (IL) 6 and 10 (inflammation), free thiols (systemic oxidative stress) and neurofilament light (NF-L) (axonal injury) were quantified in plasma. The neurometabolites total N-acetyl aspartate (tNAA) (neuronal energetics), Myo-Inositol (Ins) and total Choline (tCh) (inflammation) and, Glutathione (GSH, oxidative stress) were quantified using MRS. RESULTS Concentrations of IL-6 and IL-10 were significantly elevated in the acute phase post-mTBI, while NF-L was elevated only in the subacute phase. Total NAA was lowered in patients with mTBI, although this difference was only nominally significant (uncorrected P < 0.05). Within the patient group, acute IL-6 and subacute tNAA levels were negatively associated (r = - 0.46, uncorrected-P = 0.01), albeit not at a threshold corrected for multiple testing (corrected-P = 0.17). When age was added as a covariate a significant increase in correlation magnitude was observed (ρ = - 0.54, corrected-P = 0.03). CONCLUSION This study demonstrates potential associations between the intensity of the inflammatory response in the acute phase post-mTBI and neurometabolic perturbations in the subacute phase. Future studies should assess the longitudinal dynamics of blood-based and imaging biomarkers after injury.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medisch Spectrum Twente, Koningstraat 1, 7512 KZ, Enschede, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marius G J Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anita J Sibeijn-Kuiper
- Department of Neuroscience, BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Jacquens A, Delmotte PR, Gourbeix C, Farny N, Perret-Liaudet B, Hijazi D, Batisti V, Torkomian G, Cassereau D, Debarle C, Shotar E, Gellman C, Mathon B, Bayen E, Galanaud D, Perlbarg V, Puybasset L, Degos V. MRI volumetry and diffusion tensor imaging for diagnosis and follow-up of late post-traumatic injuries. Ann Phys Rehabil Med 2024; 67:101783. [PMID: 38147704 DOI: 10.1016/j.rehab.2023.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of acquired disability and can cause devastating and progressive post-traumatic encephalopathy. TBI is a dynamic condition that continues to evolve over time. A better understanding of the pathophysiology of these late lesions is important for the development of new therapeutic strategies. OBJECTIVES The primary objective was to compare the ability of fluid-attenuated reversion recovery (FLAIR) and diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) markers to identify participants with a Glasgow outcome scale extended (GOS-E) score of 7-8, up to 10 years after their original TBI. The secondary objective was to study the brain regionalization of DTI markers. Finally, we analyzed the evolution of late-developing brain lesions using repeated MRI images, also taken up to 10 years after the TBI. METHODS In this retrospective study, participants were included from a cohort of people hospitalized following a severe TBI. Following their discharge, they were followed-up and clinically assessed, including a DTI-MRI scan, between 2012 and 2016. We performed a cross-sectional analysis on 97 participants at a median (IQR) of 5 years (3-6) post-TBI, and a further post-TBI longitudinal analysis over 10 years on a subpopulation (n = 17) of the cohort. RESULTS Although the area under the curve (AUC) of FLAIR, fractional anisotropy (FA), and mean diffusivity (MD) were not significantly different, only the AUC of FA was statistically greater than 0.5. In addition, only the FA was correlated with clinical outcomes as assessed by GOS-E score (P<10-4). On the cross-sectional analysis, DTI markers allowed study post-TBI white matter lesions by region. In the longitudinal subpopulation analysis, the observed number of brain lesions increased for the first 5 years post-TBI, before stabilizing over the next 5 years. CONCLUSIONS This study has shown for the first time that post-TBI lesions can present in a two-phase evolution. These results must be confirmed in larger studies. French Data Protection Agency (Commission nationale de l'informatique et des libertés; CNIL) study registration no: 1934708v0.
Collapse
Affiliation(s)
- Alice Jacquens
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France.
| | - Pierre-Romain Delmotte
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Claire Gourbeix
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Nicolas Farny
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Bérenger Perret-Liaudet
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Dany Hijazi
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Valentine Batisti
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Grégory Torkomian
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| | - Didier Cassereau
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, 15 rue de l'Ecole de Médecine, 75006, Paris, France; ESPCI, 10 rue Vauquelin, 75005, Paris, France
| | - Clara Debarle
- Physical Medicine and Rehabilitation Department, Centre Hospitalier Saint-Anne, 1 rue Cabanis, GHU Paris psychiatrie et neurosciences, 75014, Paris, France
| | - Eimad Shotar
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Celia Gellman
- Icahn School of Medicine at Mount Sinai, NYC Health + Hospitals/Elmhurst, Internal Medicine Residency Program, United States
| | - Bertrand Mathon
- Department of Neurosurgery, APHP - Sorbonne University, La Pitié-Salpêtrière Hospital, 47-83, Boulevard de L'Hôpital, 75651 Cedex 13, Paris, France
| | - Eleonor Bayen
- UGECAM-IdF, groupe hospitalier Pitié-Salpêtrière, service de médecine physique et de réadaptation, Paris France
| | - Damien Galanaud
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Neuroradiologie, 75013, Paris, France
| | | | - Louis Puybasset
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France; BRAINTALE SAS, Paris, France
| | - Vincent Degos
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, AP-HP, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
4
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark Res 2023; 11:35. [PMID: 36991494 DOI: 10.1186/s40364-023-00476-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.
Collapse
Affiliation(s)
- Fang-Ying Chiu
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Center for Brain and Neurobiology Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Teaching and Research Headquarters for Sustainable Development Goals, Tzu Chi University, Hualien City, 970374, Taiwan.
| | - Yun Yen
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, 116081, Taiwan.
| |
Collapse
|
6
|
Adamson MM, Main K, Harris OA, Kang X. Sex differences in cortical thickness and diffusion properties in patients with traumatic brain injury: a pilot study. Brain Inj 2022; 36:488-502. [PMID: 35113752 DOI: 10.1080/02699052.2022.2034046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Cortical thickness and diffusion properties are important measures of gray and white matter integrity in those with traumatic brain injury (TBI). Many studies show that healthy adult females have greater cortical thickness than males across numerous brain sites. In this study, we explored this sex difference in patients with TBI. METHOD Participants consisted of 32 patients with TBI and 21 neurologically healthy controls. All were scanned by magnetic resonance imaging (MRI). Differences in cortical thickness and diffusion properties were examined between groups (i.e., TBI/control, male/female). RESULTS Patients with TBI had more cortical thinning (both hemispheres) compared to controls. They also showed decreased fractional anisotropy (FA) for several major white matter tracts. Healthy females had significantly greater cortical thickness compared to healthy males. However, this difference was smaller among the patients with TBI. We found no sex differences in diffusion properties. There were moderate correlations between cortical thickness, diffusion properties, and cognitive performance, as measured by the Trail Making Test B. CONCLUSION These findings contribute to a growing discussion on sex differences in cortical thickness and diffusion properties. Sexual dimorphism could necessitate different clinical profiles, targets, and rehabilitation strategies in patients with TBI.
Collapse
Affiliation(s)
- Maheen M Adamson
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Keith Main
- Research Division, Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Odette A Harris
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Xiaojian Kang
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|