1
|
Bouvette V, Petit Y, De Beaumont L, Guay S, Vinet SA, Wagnac E. American Football On-Field Head Impact Kinematics: Influence of Acceleration Signal Characteristics on Peak Maximal Principal Strain. Ann Biomed Eng 2024; 52:2134-2150. [PMID: 38758459 DOI: 10.1007/s10439-024-03514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Recorded head kinematics from head-impact measurement devices (HIMd) are pivotal for evaluating brain stress and strain through head finite element models (hFEM). The variability in kinematic recording windows across HIMd presents challenges as they yield inconsistent hFEM responses. Despite establishing an ideal recording window for maximum principal strain (MPS) in brain tissue, uncertainties persist about the impact characteristics influencing vulnerability when this window is shortened. This study aimed to scrutinize factors within impact kinematics affecting the reliability of different recording windows on whole-brain peak MPS using a validated hFEM. Utilizing 53 on-field head impacts recorded via an instrumented mouthguard during a Canadian varsity football game, 10 recording windows were investigated with varying pre- and post-impact-trigger durations. Tukey pair-wise comparisons revealed no statistically significant differences in MPS responses for the different recording windows. However, specific impacts showed marked variability up to 40%. It was found, through correlation analyses, that impacts with lower peak linear acceleration exhibited greater response variability across different pre-trigger durations. Signal shape, analyzed through spectral analysis, influenced the time required for MPS development, resulting in specific impacts requiring a prolonged post-trigger duration. This study adds to the existing consensus on standardizing HIMd acquisition time windows and sheds light on impact characteristics leading to peak MPS variation across different head impact kinematic recording windows. Considering impact characteristics in research assessments is crucial, as certain impacts, affected by recording duration, may lead to significant errors in peak MPS responses during cumulative longitudinal exposure assessments.
Collapse
Affiliation(s)
- Véronique Bouvette
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France.
| | - Y Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - L De Beaumont
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - S Guay
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - S A Vinet
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - E Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| |
Collapse
|
2
|
Alosco ML, Tripodis Y, Baucom ZH, Adler CH, Balcer LJ, Bernick C, Mariani ML, Au R, Banks SJ, Barr WB, Wethe JV, Cantu RC, Coleman MJ, Dodick DW, McClean MD, McKee AC, Mez J, Palmisano JN, Martin B, Hartlage K, Lin AP, Koerte IK, Cummings JL, Reiman EM, Stern RA, Shenton ME, Bouix S. White matter hyperintensities in former American football players. Alzheimers Dement 2023; 19:1260-1273. [PMID: 35996231 PMCID: PMC10351916 DOI: 10.1002/alz.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The presentation, risk factors, and etiologies of white matter hyperintensities (WMH) in people exposed to repetitive head impacts are unknown. We examined the burden and distribution of WMH, and their association with years of play, age of first exposure, and clinical function in former American football players. METHODS A total of 149 former football players and 53 asymptomatic unexposed participants (all men, 45-74 years) completed fluid-attenuated inversion recovery magnetic resonance imaging, neuropsychological testing, and self-report neuropsychiatric measures. Lesion Segmentation Toolbox estimated WMH. Analyses were performed in the total sample and stratified by age 60. RESULTS In older but not younger participants, former football players had greater total, frontal, temporal, and parietal log-WMH compared to asymptomatic unexposed men. In older but not younger former football players, greater log-WMH was associated with younger age of first exposure to football and worse executive function. DISCUSSION In older former football players, WMH may have unique presentations, risk factors, and etiologies. HIGHLIGHTS Older but not younger former football players had greater total, frontal, temporal, and parietal lobe white matter hyperintensities (WMH) compared to same-age asymptomatic unexposed men. Younger age of first exposure to football was associated with greater WMH in older but not younger former American football players. In former football players, greater WMH was associated with worse executive function and verbal memory.
Collapse
Affiliation(s)
- Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Zachary H. Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Laura J. Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV
- Department of Neurology, University of Washington, Seattle, WA
| | - Megan L. Mariani
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA
| | - Rhoda Au
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
- Framingham Heart Study, Framingham, MA
- Slone Epidemiology Center, Boston University, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Sarah J. Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA
| | - William B. Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY
| | - Jennifer V. Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
| | - David W. Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Michael D. McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
- Framingham Heart Study, Framingham, MA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA
| | - Kaitlin Hartlage
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA
| | - Alexander P. Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer’s Consortium, Phoenix, AZ
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
3
|
Alosco ML, Ly M, Mosaheb S, Saltiel N, Uretsky M, Tripodis Y, Martin B, Palmisano J, Delano-Wood L, Bondi MW, Meng G, Xia W, Daley S, Goldstein LE, Katz DI, Dwyer B, Daneshvar DH, Nowinski C, Cantu RC, Kowall NW, Stern RA, Alvarez VE, Mez J, Huber BR, McKee AC, Stein TD. Decreased myelin proteins in brain donors exposed to football-related repetitive head impacts. Brain Commun 2023; 5:fcad019. [PMID: 36895961 PMCID: PMC9990992 DOI: 10.1093/braincomms/fcad019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
American football players and other individuals exposed to repetitive head impacts can exhibit a constellation of later-life cognitive and neuropsychiatric symptoms. While tau-based diseases such as chronic traumatic encephalopathy can underpin certain symptoms, contributions from non-tau pathologies from repetitive head impacts are increasingly recognized. We examined cross-sectional associations between myelin integrity using immunoassays for myelin-associated glycoprotein and proteolipid protein 1 with risk factors and clinical outcomes in brain donors exposed to repetitive head impacts from American football. Immunoassays for myelin-associated glycoprotein and proteolipid protein 1 were conducted on dorsolateral frontal white matter tissue samples of 205 male brain donors. Proxies of exposure to repetitive head impacts included years of exposure and age of first exposure to American football play. Informants completed the Functional Activities Questionnaire, Behavior Rating Inventory of Executive Function-Adult Version (Behavioral Regulation Index), and Barratt Impulsiveness Scale-11. Associations between myelin-associated glycoprotein and proteolipid protein 1 with exposure proxies and clinical scales were tested. Of the 205 male brain donors who played amateur and professional football, the mean age was 67.17 (SD = 16.78), and 75.9% (n = 126) were reported by informants to be functionally impaired prior to death. Myelin-associated glycoprotein and proteolipid protein 1 correlated with the ischaemic injury scale score, a global indicator of cerebrovascular disease (r = -0.23 and -0.20, respectively, Ps < 0.01). Chronic traumatic encephalopathy was the most common neurodegenerative disease (n = 151, 73.7%). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with chronic traumatic encephalopathy status, but lower proteolipid protein 1 was associated with more severe chronic traumatic encephalopathy (P = 0.03). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with other neurodegenerative disease pathologies. More years of football play was associated with lower proteolipid protein 1 [beta = -2.45, 95% confidence interval (CI) [-4.52, -0.38]] and compared with those who played <11 years of football (n = 78), those who played 11 or more years (n = 128) had lower myelin-associated glycoprotein (mean difference = 46.00, 95% CI [5.32, 86.69]) and proteolipid protein 1 (mean difference = 24.72, 95% CI [2.40, 47.05]). Younger age of first exposure corresponded to lower proteolipid protein 1 (beta = 4.35, 95% CI [0.25, 8.45]). Among brain donors who were aged 50 or older (n = 144), lower proteolipid protein 1 (beta = -0.02, 95% CI [-0.047, -0.001]) and myelin-associated glycoprotein (beta = -0.01, 95% CI [-0.03, -0.002]) were associated with higher Functional Activities Questionnaire scores. Lower myelin-associated glycoprotein correlated with higher Barratt Impulsiveness Scale-11 scores (beta = -0.02, 95% CI [-0.04, -0.0003]). Results suggest that decreased myelin may represent a late effect of repetitive head impacts that contributes to the manifestation of cognitive symptoms and impulsivity. Clinical-pathological correlation studies with prospective objective clinical assessments are needed to confirm our findings.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Monica Ly
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Sydney Mosaheb
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | | | - Weiming Xia
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Daley
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Douglas I Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Robert C Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Koerte IK, Wiegand TLT, Bonke EM, Kochsiek J, Shenton ME. Diffusion Imaging of Sport-related Repetitive Head Impacts-A Systematic Review. Neuropsychol Rev 2023; 33:122-143. [PMID: 36508043 PMCID: PMC9998592 DOI: 10.1007/s11065-022-09566-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Repetitive head impacts (RHI) are commonly observed in athletes participating in contact sports such as American football, ice hockey, and soccer. RHI usually do not result in acute symptoms and are therefore often referred to as subclinical or "subconcussive" head impacts. Epidemiological studies report an association between exposure to RHI and an increased risk for the development of neurodegenerative diseases. Diffusion magnetic resonance imaging (dMRI) has emerged as particularly promising for the detection of subtle alterations in brain microstructure following exposure to sport-related RHI. The purpose of this study was to perform a systematic review of studies investigating the effects of exposure to RHI on brain microstructure using dMRI. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to determine studies that met inclusion and exclusion criteria across three databases. Seventeen studies were identified and critically evaluated. Results from these studies suggest an association between white matter alterations and RHI exposure in youth and young adult athletes. The most consistent finding across studies was lower or decreased fractional anisotropy (FA), a measure of the directionality of the diffusion of water molecules, associated with greater exposure to sport-related RHI. Whether decreased FA is associated with functional outcome (e.g., cognition) in those exposed to RHI is yet to be determined. This review further identified areas of importance for future research to increase the diagnostic and prognostic value of dMRI in RHI and to improve our understanding of the effects of RHI on brain physiology and microstructure.
Collapse
Affiliation(s)
- Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA. .,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Tim L T Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Janna Kochsiek
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
McDonald MA, Tayebi M, McGeown JP, Kwon EE, Holdsworth SJ, Danesh-Meyer HV. A window into eye movement dysfunction following mTBI: A scoping review of magnetic resonance imaging and eye tracking findings. Brain Behav 2022; 12:e2714. [PMID: 35861623 PMCID: PMC9392543 DOI: 10.1002/brb3.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI), commonly known as concussion, is a complex neurobehavioral phenomenon affecting six in 1000 people globally each year. Symptoms last between days and years as microstructural damage to axons and neurometabolic changes result in brain network disruption. There is no clinically available objective biomarker to diagnose the severity of injury or monitor recovery. However, emerging evidence suggests eye movement dysfunction (e.g., saccades and smooth pursuits) in patients with mTBI. Patients with a higher symptom burden and prolonged recovery time following injury may show higher degrees of eye movement dysfunction. Likewise, recent advances in magnetic resonance imaging (MRI) have revealed both white matter tract damage and functional network alterations in mTBI patients, which involve areas responsible for the ocular motor control. This scoping review is presented in three sections: Section 1 explores the anatomical control of eye movements to aid the reader with interpreting the discussion in subsequent sections. Section 2 examines the relationship between abnormal MRI findings and eye tracking after mTBI based on the available evidence. Finally, Section 3 communicates gaps in our knowledge about MRI and eye tracking, which should be addressed in order to substantiate this emerging field.
Collapse
Affiliation(s)
- Matthew A McDonald
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne, New Zealand
| | - Maryam Tayebi
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joshua P McGeown
- Mātai Medical Research Institute, Gisborne, New Zealand.,Auckland University of Technology Traumatic Brain Injury Network, Auckland, New Zealand
| | - Eryn E Kwon
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J Holdsworth
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Eye Institute, Auckland, New Zealand
| |
Collapse
|
6
|
Wu S, Zhao W, Ji S. Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 394:114913. [PMID: 35572209 PMCID: PMC9097909 DOI: 10.1016/j.cma.2022.114913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Real-time dynamic simulation remains a significant challenge for spatiotemporal data of high dimension and resolution. In this study, we establish a transformer neural network (TNN) originally developed for natural language processing and a separate convolutional neural network (CNN) to estimate five-dimensional (5D) spatiotemporal brain-skull relative displacement resulting from impact (isotropic spatial resolution of 4 mm with temporal resolution of 1 ms). Sequential training is applied to train (N = 5184 samples) the two neural networks for estimating the complete 5D displacement across a temporal duration of 60 ms. We find that TNN slightly but consistently outperforms CNN in accuracy for both displacement and the resulting voxel-wise four-dimensional (4D) maximum principal strain (e.g., root mean squared error (RMSE) of ~1.0% vs. ~1.6%, with coefficient of determination, R 2 >0.99 vs. >0.98, respectively, and normalized RMSE (NRMSE) at peak displacement of 2%-3%, based on an independent testing dataset; N = 314). Their accuracies are similar for a range of real-world impacts drawn from various published sources (dummy, helmet, football, soccer, and car crash; average RMSE/NRMSE of ~0.3 mm/~4%-5% and average R 2 of ~0.98 at peak displacement). Sequential training is effective for allowing instantaneous estimation of 5D displacement with high accuracy, although TNN poses a heavier computational burden in training. This work enables efficient characterization of the intrinsically dynamic brain strain in impact critical for downstream multiscale axonal injury model simulation. This is also the first application of TNN in biomechanics, which offers important insight into how real-time dynamic simulations can be achieved across diverse engineering fields.
Collapse
Affiliation(s)
- Shaoju Wu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Wei Zhao
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| |
Collapse
|
7
|
Monroe DC, DuBois SL, Rhea CK, Duffy DM. Age-Related Trajectories of Brain Structure–Function Coupling in Female Roller Derby Athletes. Brain Sci 2021; 12:brainsci12010022. [PMID: 35053766 PMCID: PMC8774127 DOI: 10.3390/brainsci12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
Contact and collision sports are believed to accelerate brain aging. Postmortem studies of the human brain have implicated tau deposition in and around the perivascular space as a biomarker of an as yet poorly understood neurodegenerative process. Relatively little is known about the effects that collision sport participation has on the age-related trajectories of macroscale brain structure and function, particularly in female athletes. Diffusion MRI and resting-state functional MRI were obtained from female collision sport athletes (n = 19 roller derby (RD) players; 23–45 years old) and female control participants (n = 14; 20–49 years old) to quantify structural coupling (SC) and decoupling (SD). The novel and interesting finding is that RD athletes, but not controls, exhibited increasing SC with age in two association networks: the frontoparietal network, important for cognitive control, and default-mode network, a task-negative network (permuted p = 0.0006). Age-related increases in SC were also observed in sensorimotor networks (RD, controls) and age-related increases in SD were observed in association networks (controls) (permuted p ≤ 0.0001). These distinct patterns suggest that competing in RD results in compressed neuronal timescales in critical networks as a function of age and encourages the broader study of female athlete brains across the lifespan.
Collapse
Affiliation(s)
- Derek C. Monroe
- Correspondence: ; Tel.: +1-336-334-5347; Fax: +1-336-334-3238
| | | | | | | |
Collapse
|