1
|
Chen RY, Lee KZ. Therapeutic Efficacy of Hemodynamic Management Using Norepinephrine on Cardiorespiratory Function Following Cervical Spinal Cord Contusion in Rats. J Neurotrauma 2024. [PMID: 39661956 DOI: 10.1089/neu.2024.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion. Adult male rats underwent cervical spinal cord contusion and the implantation of osmotic pumps filled with saline or norepinephrine (NE) (125 μg/(kg·h) for 1 week). The cardiorespiratory function of unanesthetized rats was examined using a non-invasive blood pressure analyzer and double-chamber plethysmography. Cervical spinal cord contusion caused a long-term reduction in the mean arterial pressure and tidal volume. This hypotensive response was significantly reversed in contused rats receiving NE (1 day: 88 ± 19 mmHg; 2 weeks: 96 ± 13 mmHg) compared with contused rats receiving saline (1 day: 72 ± 15 mmHg; 2 weeks: 82 ± 10 mmHg). NE also significantly improved the tidal volume 1 day post-injury (contused + NE: 0.7 ± 0.2 mL; contused + saline: 0.5 ± 0.1 mL). Immunofluorescence staining results revealed that injury-induced reductions of noradrenergic and glutamatergic fibers within the thoracic spinal cord were significantly improved by NE. These results provided the evidence demonstrating that hemodynamic management using NE significantly improves cardiorespiratory function by alleviating neural pathway damage after cervical spinal cord contusion.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Su J, Zhou F, Hu M, Xu Q, Huang Y, Chen S, Zhou H, Chen H. The effect of repetitive magnetic stimulation on neuronal apoptosis and PI3K/Akt protein expression in rats with incomplete spinal cord injury. J Neurophysiol 2024; 132:1211-1222. [PMID: 39196677 DOI: 10.1152/jn.00210.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
The pathological and physiological process of spinal cord injury is complex, and there is currently no effective treatment method. Magnetic stimulation is an emerging electromagnetic therapy method in recent years, and studies have shown its potential to reduce cell apoptosis. This study used an improved Allen's method to replicate an incomplete spinal cord injury rat model, and repetitive magnetic stimulation (rMS) intervention was performed on the rats for 21 days. The research plan consists of two parts. The first part aims to observe the effects of rMS on motor function and neuronal cell apoptosis in rats. The Basso-Beattie-Bresnahan (BBB) score results indicate that rMS promotes the recovery of motor function in rats; H&E staining showed that rMS improved spinal cord structural damage and inflammatory infiltration; TUNEL and NeuN staining suggest that rMS can reduce cell apoptosis and promote neuronal cell survival. The second part aims to explore the mechanism of action of rMS. Immunofluorescence staining showed that after rMS intervention, the positive counts of PI3K and Akt increased, whereas the positive counts of caspase-3 decreased. Western blot showed that after rMS intervention, the expression of phospho-phosphatidylinositol-3 kinase (p-PI3K)/PI3K, phospho (p)-Akt/Akt, and Bcl-2 increased, whereas the expression of Bcl-2-associated X protein (Bax) and caspase-3 decreased. In summary, rMS can significantly reduce cell apoptosis in the damaged spinal cord and promote neuronal cell survival. Its mechanism of action may be related to promoting the expression of PI3K/Akt pathway proteins, upregulating the antiapoptotic protein Bcl-2, downregulating the proapoptotic protein Bax, and thereby inhibiting the expression of apoptotic protein caspase-3. NEW & NOTEWORTHY Spinal cord injury is a serious disabling central nervous system disease. Recently, research on magnetic stimulation therapy for spinal cord injury has been increasing, and its potential has gradually attracted the attention of experts. This study found that repetitive magnetic stimulation (rMS) can improve motor function and reduce neuronal apoptosis in spinal cord injury rats. The mechanism may be related to increasing the expression of phosphatidylinositol-3 kinase (PI3K)/Akt protein, thereby inhibiting cell apoptosis and promoting neuronal survival.
Collapse
Affiliation(s)
- Junhong Su
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Fujian Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Mengxuan Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Qingqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Ying Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Shi Chen
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Hongwei Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Anhui Medical, University, Hefei, People's Republic of China
| |
Collapse
|
3
|
Ko CC, Lee PH, Lee JS, Lee KZ. Spinal decompression surgery may alleviate vasopressor-induced spinal hemorrhage and extravasation during acute cervical spinal cord injury in rats. Spine J 2024; 24:519-533. [PMID: 37793474 DOI: 10.1016/j.spinee.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Cervical spinal injury often disrupts the supraspinal vasomotor pathways projecting to the thoracic sympathetic preganglionic neurons, leading to cardiovascular dysfunction. The current guideline is to maintain the mean arterial blood pressure at 85 to 90 mmHg using a vasopressor during the first week of the injury. Some studies have demonstrated that this treatment might be beneficial to alleviate secondary injury and improve neurological outcomes; however, elevation of blood pressure may exacerbate spinal hemorrhage, extravasation, and edema, exacerbating the initial injury. PURPOSE The present study was designed to (1) examine whether vasopressor administration exacerbates spinal hemorrhage and extravasation; (2) evaluate whether spinal decompression surgery relieves vasopressor-induced spinal hemorrhage and extravasation. STUDY DESIGN In vivo animal study. METHODS Animals received a saline solution or a vasopressor (phenylephrine hydrochloride, 500 or 1000 μg/kg, 7 mL/kg/h) after mid-cervical contusion with or without spinal decompression (ie, incision of the dura and arachnoid mater). Spinal cord hemorrhage and extravasation were examined by expression of Evans blue within the spinal cord section. RESULTS The results demonstrated that cervical spinal contusion significantly reduced the mean arterial blood pressure and induced spinal hemorrhage and extravasation. Phenylephrine infusion significantly elevated the mean arterial blood pressure to the preinjury level within 15 to 60 minutes postcontusion; however, spinal hemorrhage and extravasation were more extensive in animals that received phenylephrine than in those that received saline. Notably, spinal decompression mitigated spinal hemorrhage and extravasation in contused rats who received phenylephrine. CONCLUSIONS These data indicate that, although phenylephrine can prevent hypotension after cervical spinal injury, it also causes excess spinal hemorrhage and extravasation. CLINICAL SIGNIFICANCE Spinal decompressive surgery seemed to minimize the side effect of phenylephrine as vasopressor treatment during acute spinal cord injury.
Collapse
Affiliation(s)
- Chia-Chen Ko
- Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung city 804, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, No. 138, Sheng-Li Rd., Tainan city 704, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, No. 138, Sheng-Li Rd., Tainan city 704, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan city 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan city 701, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung city 804, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung city 807, Taiwan.
| |
Collapse
|
4
|
Lee KZ, Vinit S. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat. Spine J 2024; 24:352-372. [PMID: 37774983 DOI: 10.1016/j.spinee.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND CONTEXT Magnetic stimulation can noninvasively modulate the neuronal excitability through different stimulatory patterns. PURPOSE The present study hypothesized that trans-spinal magnetic stimulation with intermittent theta burst stimulatory pattern can modulate respiratory motor outputs in a pre-clinical rat model of cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS The effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity was assessed in adult rats with unilateral cervical spinal cord contusion at 2 weeks postinjury. RESULTS The results demonstrated that unilateral cervical spinal cord contusion significantly attenuated the inspiratory activity and motor evoked potential of the diaphragm. Trans-spinal magnetic intermittent theta burst stimulation significantly increased the inspiratory activity of the diaphragm in cervical spinal cord contused rats. Inspiratory bursting was also recruited by trans-spinal magnetic intermittent theta burst stimulation in the rats without diaphragmatic activity after cervical spinal cord injury. In addition, trans-spinal magnetic intermittent theta burst stimulation is associated with increases in oxygen consumption and carbon dioxide production. CONCLUSIONS These results suggest that trans-spinal magnetic intermittent theta burst stimulation can induce respiratory neuroplasticity. CLINICAL SIGNIFICANCE We propose that trans-spinal theta burst magnetic stimulation may be considered a potential rehabilitative strategy for improving the respiratory activity after cervical spinal cord injury. This will require future clinical study.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 804 Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 9F, First Teaching Building, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
5
|
Lin YT, Gonzalez-Rothi EJ, Lee KZ. Acute Hyperoxia Improves Spinal Cord Oxygenation and Circulatory Function Following Cervical Spinal Cord Injury in Rats. CHINESE J PHYSIOL 2024; 67:27-36. [PMID: 38780270 DOI: 10.4103/ejpi.ejpi-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Chen RY, Chang HS, Huang HC, Hsueh YH, Tu YK, Lee KZ. Comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury in the rat. J Appl Physiol (1985) 2023; 135:1268-1283. [PMID: 37855033 DOI: 10.1152/japplphysiol.00473.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Cervical spinal cord injury interrupts supraspinal pathways innervating thoracic sympathetic preganglionic neurons and results in cardiovascular dysfunction. Both respiratory and locomotor functions were also impaired due to damages of motoneuron pools controlling respiratory and forelimb muscles, respectively. However, no study has investigated autonomic and somatic motor functions in the same animal model. The present study aimed to establish a cervical spinal cord injury model to evaluate cardiorespiratory response and locomotor activity in unanesthetized rats. Cardiovascular response and respiratory behavior following laminectomy or cervical spinal contusion were measured using noninvasive blood pressure analyzer and plethysmography systems, respectively. Locomotor activity was evaluated by an open-field test and a locomotor rating scale. The results demonstrated that mean arterial blood pressure and heart rate were significantly reduced in contused rats compared with uninjured rats at the acute injured stage. Tidal volume was also significantly reduced during the acute and subchronic stages. Moreover, locomotor function was severely impaired, evidenced by decreasing moving ability and locomotor rating scores from the acute to chronic injured stages. Retrograde neurotracer results revealed that cervical spinal cord injury caused a reduction in number of phrenic and triceps motoneurons. Immunofluorescence staining revealed a significant attenuation of serotonergic, noradrenergic, glutamatergic, and GABAergic fibers innervating the thoracic sympathetic preganglionic neurons in chronically contused rats. These results revealed the pathological mechanism underlying the comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury. We proposed that this animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.NEW & NOTEWORTHY The present study establishes a preclinical rodent model to comprehensively investigate physiological functions under unanesthetized condition following cervical spinal cord contusion. The results demonstrated that cervical spinal cord contusion is associated with impairments in cardiovascular, respiratory, and locomotor function. Respiratory and forelimb motoneurons and neurochemical innervations of sympathetic preganglionic neurons were damaged following injury. This animal model can be used to evaluate the therapeutic efficacy of potential strategies to improve different physiological functions.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Sen Chang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Lv L, Cheng X, Yang J, Chen X, Ni J. Novel role for non-invasive neuromodulation techniques in central respiratory dysfunction. Front Neurosci 2023; 17:1226660. [PMID: 37680969 PMCID: PMC10480838 DOI: 10.3389/fnins.2023.1226660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Respiration is a crucial steady-state function of human life. Central nervous system injury can damage the central respiratory pattern generator (CRPG) or interrupt its outflow, leading to central respiratory paralysis and dysfunction, which can endanger the patient's life. At present, there is no effective means to reverse this process. Commonly used non-invasive neuromodulation techniques include repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and so forth, which have been widely applied in nervous system diseases and their various secondary symptoms, but rarely in respiratory function. Clinical and animal studies have confirmed that TMS is also suitable for investigating the excitability and plasticity of ascending corticospinal respiratory pathways. In addition, although rTMS and tDCS differ in their respective mechanisms, both can regulate respiratory networks in healthy individuals and in diseased states. In this review, we provide an overview of the physiology of respiration, the use of TMS to assess the excitability of corticophrenic pathways in healthy individuals and in central respiratory disorders, followed by an overview of the animal and clinical studies of rTMS, tDCS and so forth in regulating respiratory circuits and the possible mechanisms behind them. It was found that the supplementary motor area (SMA) and the phrenic motor neuron (PMN) may be key regulatory areas. Finally, the challenges and future research directions of neuroregulation in respiratory function are proposed. Through understanding how neuromodulation affects the respiratory neural circuit non-invasively, we can further explore the therapeutic potential of this neuromodulation strategy, so as to promote the recovery of respiratory function after central nervous system diseases or injury.
Collapse
Affiliation(s)
- Lan Lv
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiaying Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Wang Y, Dong T, Li X, Zhao H, Yang L, Xu R, Fu Y, Li L, Gai X, Qin D. Research progress on the application of transcranial magnetic stimulation in spinal cord injury rehabilitation: a narrative review. Front Neurol 2023; 14:1219590. [PMID: 37533475 PMCID: PMC10392830 DOI: 10.3389/fneur.2023.1219590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Traumatic or non-traumatic spinal cord injury (SCI) can lead to severe disability and complications. The incidence of SCI is high, and the rehabilitation cycle is long, which increases the economic burden on patients and the health care system. However, there is no practical method of SCI treatment. Recently, transcranial magnetic stimulation (TMS), a non-invasive brain stimulation technique, has been shown to induce changes in plasticity in specific areas of the brain by regulating the activity of neurons in the stimulation site and its functionally connected networks. TMS is a new potential method for the rehabilitation of SCI and its complications. In addition, TMS can detect the activity of neural circuits in the central nervous system and supplement the physiological evaluation of SCI severity. This review describes the pathophysiology of SCI as well as the basic principles and classification of TMS. We mainly focused on the latest research progress of TMS in the physiological evaluation of SCI as well as the treatment of motor dysfunction, neuropathic pain, spasticity, neurogenic bladder, respiratory dysfunction, and other complications. This review provides new ideas and future directions for SCI assessment and treatment.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tingting Dong
- Department of Rehabilitation Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiahuang Li
- Department of Neurosurgery, Mengzi People’s Hospital, Mengzi, China
| | - Huiyun Zhao
- Department of Rehabilitation Medicine, Dongchuan District People’s Hospital, Kunming, China
| | - Lili Yang
- Department of Rehabilitation Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Rui Xu
- Department of Rehabilitation Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yi Fu
- Department of Pulmonary and Critical Care Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Li Li
- Department of Emergency Trauma Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
10
|
Lee KZ. Neuropathology of distinct diaphragm areas following mid-cervical spinal cord contusion in the rat. Spine J 2022; 22:1726-1741. [PMID: 35680014 DOI: 10.1016/j.spinee.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The diaphragm is innervated by phrenic motoneurons distributed from the third to fifth cervical spinal cord. The rostral to caudal phrenic motoneuron pool segmentally innervates the ventral, medial, and dorsal diaphragm. PURPOSE The present study was designed to investigate the physiological and transcriptomic mechanism of neuropathology of distinct diaphragm areas following mid-cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS Electromyograms and transcriptome of the ventral, medial, and dorsal diaphragm were examined in rats that received cervical laminectomy or mid-cervical spinal cord contusion in the acute (ie, 1-3 days) or subchronic (ie, ∼14 days) injury stages. RESULTS Mid-cervical spinal cord contusion significantly attenuated the inspiratory bursting amplitude of the dorsal diaphragm but not the ventral or medial diaphragm. Moreover, the discharge onset of the dorsal diaphragm was significantly delayed compared with that of the ventral and medial diaphragm in contused rats. Transcriptomic analysis revealed a robust change in gene expression in the ventral diaphragm compared with that in the dorsal diaphragm. Specifically, enrichment analysis of differentially expressed genes demonstrated that the cell cycle and immune response were significantly upregulated, whereas several metabolic pathways were downregulated, in the ventral diaphragm of acutely contused rats. However, no significant Kyoto Encyclopedia of Genes and Genomes pathway was altered in the dorsal diaphragm. CONCLUSIONS These results suggest that mid-cervical spinal cord injury has different impacts on the physiological and transcriptomic responses of distinct diaphragm areas. CLINICAL SIGNIFICANCE Future therapeutic strategies can consider applying different therapies to distinct diaphragm areas following cervical spinal cord injury. Additionally, confirmation of activities across different diaphragm areas may provide a critical reference for the placement of diaphragmatic pacing electrodes.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Michel-Flutot P, Vinit S. La stimulation magnétique répétée pour le traitement des traumas spinaux. Med Sci (Paris) 2022; 38:679-685. [DOI: 10.1051/medsci/2022108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les traumas spinaux induisent des déficits moteurs et sensoriels. La mise au point de thérapies visant à rétablir les fonctions altérées à la suite d’une lésion de la moelle épinière est donc nécessaire. La stimulation magnétique répétée (SMr) est une thérapie innovante et non invasive utilisée pour moduler l’activité de réseaux neuronaux dans diverses maladies neurologiques, telles que la maladie de Parkinson, ou psychiatriques, telles que le trouble bipolaire. Son utilisation chez les personnes atteintes de traumas spinaux pourrait avoir des effets fonctionnels bénéfiques. Des études réalisées in vitro, in vivo et ex vivo ont permis de comprendre en partie les mécanismes sous-jacents à la modulation de l’activité neuronale induite par les protocoles de SMr. Son utilisation dans des modèles précliniques de lésion médullaire a de plus montré des effets bénéfiques fonctionnels. Ainsi, la SMr pourrait potentialiser la récupération des fonctions perdues après un trauma spinal.
Collapse
|
12
|
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. BIOLOGY 2022; 11:biology11030473. [PMID: 35336846 PMCID: PMC8945729 DOI: 10.3390/biology11030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary High spinal cord injuries (SCIs) are known to lead to permanent diaphragmatic paralysis, and to induce deleterious post-traumatic inflammatory processes following cervical spinal cord injury. We used a noninvasive therapeutic tool (repetitive transcranial magnetic stimulation (rTMS)), to harness plasticity in spared descending respiratory circuit and reduce the inflammatory processes. Briefly, the results obtained in this present study suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes. Abstract High spinal cord injuries (SCIs) lead to permanent diaphragmatic paralysis. The search for therapeutics to induce functional motor recovery is essential. One promising noninvasive therapeutic tool that could harness plasticity in a spared descending respiratory circuit is repetitive transcranial magnetic stimulation (rTMS). Here, we tested the effect of chronic high-frequency (10 Hz) rTMS above the cortical areas in C2 hemisected rats when applied for 7 days, 1 month, or 2 months. An increase in intact hemidiaphragm electromyogram (EMG) activity and excitability (diaphragm motor evoked potentials) was observed after 1 month of rTMS application. Interestingly, despite no real functional effects of rTMS treatment on the injured hemidiaphragm activity during eupnea, 2 months of rTMS treatment strengthened the existing crossed phrenic pathways, allowing the injured hemidiaphragm to increase its activity during the respiratory challenge (i.e., asphyxia). This effect could be explained by a strengthening of respiratory descending fibers in the ventrolateral funiculi (an increase in GAP-43 positive fibers), sustained by a reduction in inflammation in the C1–C3 spinal cord (reduction in CD68 and Iba1 labeling), and acceleration of intracellular plasticity processes in phrenic motoneurons after chronic rTMS treatment. These results suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes.
Collapse
|