1
|
Zhang J, Wang C, He C. Plasma fibrinogen level is independent risk factor associated with the incidence of pulmonary infection in patients with spinal cord injury: a retrospective cohort study. BMC Pulm Med 2024; 24:520. [PMID: 39425165 PMCID: PMC11487796 DOI: 10.1186/s12890-024-03332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Patients with spinal cord injury (SCI) are at higher risk of developing pulmonary infection (PI), and plasma fibrinogen level may be an independent risk factor for PI. However, the relationship between fibrinogen level and PI incidence in the SCI population remains unclear. This study aimed to elucidate the association between plasma fibrinogen level and the occurrence of PI among SCI patients. METHODS We conducted a retrospective analysis of 576 SCI patients admitted to the Rehabilitation Medicine Department between January 1, 2017, and December 31, 2021. Following exclusions, 491 patients were included in the final analysis, with 139 PI cases identified. RESULTS Surgery, level of injury and chest comorbidities were covariates in the relationship between fibrinogen level and PI incidence. Other identified potential risk factors for PI included age, D-dimer level, urinary tract infections (UTI), deep vein thrombosis (DVT), anticoagulant therapy, injury mechanism, and the American Spinal Injury Association Impairment Scale (AIS) grades. After adjusting for these factors, we found that for every 1 g/L increase in fibrinogen level, the risk of developing PI increased by 18% (HR = 1.18, P = 0.011), and indicating a positive linear relationship between fibrinogen level and PI incidence. CONCLUSION Plasma fibrinogen was an independent risk factor for PI in patients with SCI, especially for AIS-B and C grades. Proactive management of fibrinogen level after admission to rehabilitation medicine department could be crucial in reducing the incidence of PI in this vulnerable population. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jinlong Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan Province, 610041, PR China
| | - Cheng Wang
- Department of Rehabilitation Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, Anhui Province, 230031, PR China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan Province, 610041, PR China.
| |
Collapse
|
2
|
Garcia-Ovejero D, Beyerer E, Mach O, Leister I, Strowitzki M, Wutte C, Maier D, Kramer JL, Aigner L, Arevalo-Martin A, Grassner L. Untargeted blood serum proteomics identifies novel proteins related to neurological recovery after human spinal cord injury. J Transl Med 2024; 22:666. [PMID: 39020346 PMCID: PMC11256486 DOI: 10.1186/s12967-024-05344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Evelyn Beyerer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Christof Wutte
- Department of Neurosurgery, BG Trauma Center, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John Lk Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany.
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria.
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Li Y, Wang B, Sun W, Kong C, Li G, Chen X, Lu S. Screening the immune-related circRNAs and genes in mice of spinal cord injury by RNA sequencing. Front Immunol 2022; 13:1060290. [PMID: 36479123 PMCID: PMC9720296 DOI: 10.3389/fimmu.2022.1060290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological condition that leading to serious nerve damage, disability and even death. Increasing evidence have revealed that circular RNAs (circRNAs) and mRNA are widely involved in the regulation of the pathological process of neurological diseases by sponging microRNAs (miRNAs). Nevertheless, the potential biological functions and regulatory mechanisms of circRNAs in the subacute stage of SCI remain unclear. We analyzed the expression and regulatory patterns of circRNAs and mRNAs in SCI mice models using RNA-sequencing and bioinformatics analysis. A total of 24 circRNAs and 372 mRNAs were identified to be differentially expressed. Then we identifying the immune-related genes (IRGs) from them. The protein-protein interaction network were constructed based on the STRING database and Cytoscape software. Furthermore, Go and KEGG enrichment analysis were conducted to predict the functions of the IRGs and host genes of DECs. These findings will contribute to elucidate the pathophysiology of SCI and provide effective therapeutic targets for SCI patients.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baobao Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guowang Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaolong Chen, ; Shibao Lu,
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaolong Chen, ; Shibao Lu,
| |
Collapse
|