1
|
Jo J, Wong G, Williams KL, Davis PJ, Rigney GH, Zuckerman SL, Terry DP. Age of First Exposure to Contact Sports Is Not Associated With Worse Later-In-Life Brain Health in a Cohort of Community-Dwelling Older Men. Clin J Sport Med 2025; 35:52-59. [PMID: 38990169 DOI: 10.1097/jsm.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To evaluate whether early age of first exposure to contact sports (AFE-CS) is associated with worse long-term brain health outcomes. DESIGN A cross-sectional, survey study of older men with a history of contact sport participation was completed. SETTING Tertiary care facility. PARTICIPANTS A cohort of community-dwelling older men dichotomized by using AFE-CS (<12 years vs ≥12 years). INTERVENTIONS Independent variables included a dichotomized group of AFE-CS (<12 years vs ≥12 years). MAIN OUTCOME MEASURES Brain health outcomes measured by depression, anxiety, cognitive difficulties, and neurobehavioral symptoms. Endorsements of general health problems, motor symptoms, and psychiatric history were also collected. Age of first exposure groups was compared using t tests, χ 2 tests, and multivariable linear regressions, which included the following covariates: age, number of prior concussions, and total years of contact sport. RESULTS Of 69 men aged 70.5 ± 8.0 years, approximately one-third of the sample (34.8%) reported AFE-CS before age 12 years. That group had more years of contact sports (10.8 ± 9.2 years) compared with those with AFE-CS ≥12 (5.6 ± 4.5 years; P = 0.02). No differences were found after univariate testing between AFE-CS groups on all outcomes ( P -values >0.05). Multivariable models suggest that AFE-CS is not a predictor of depression or anxiety. Those in the AFE-CS <12 group had fewer cognitive difficulties ( P = 0.03) and fewer neurobehavioral symptoms ( P = 0.03). CONCLUSIONS Those with AFE-CS <12 to contact sports did not have worse long-term brain health outcomes compared with those with AFE-CS ≥12. Individuals with AFE-CS <12 had significantly lower British Columbia Cognitive Complaints Inventory and Neurobehavioral Symptom Inventory scores compared with those with AFE-CS ≥12. CLINICAL RELEVANCE The benefits of earlier AFE-CS may outweigh the risks of head strikes and result in comparable long-term brain health outcomes.
Collapse
Affiliation(s)
- Jacob Jo
- Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Gunther Wong
- Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kristen L Williams
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Philip J Davis
- Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Grant H Rigney
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Harvard Medical School, Boston, Massachusetts
| | - Scott L Zuckerman
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Douglas P Terry
- Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Sport Concussion Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
2
|
Bouvette V, Petit Y, De Beaumont L, Guay S, Vinet SA, Wagnac E. American Football On-Field Head Impact Kinematics: Influence of Acceleration Signal Characteristics on Peak Maximal Principal Strain. Ann Biomed Eng 2024; 52:2134-2150. [PMID: 38758459 DOI: 10.1007/s10439-024-03514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Recorded head kinematics from head-impact measurement devices (HIMd) are pivotal for evaluating brain stress and strain through head finite element models (hFEM). The variability in kinematic recording windows across HIMd presents challenges as they yield inconsistent hFEM responses. Despite establishing an ideal recording window for maximum principal strain (MPS) in brain tissue, uncertainties persist about the impact characteristics influencing vulnerability when this window is shortened. This study aimed to scrutinize factors within impact kinematics affecting the reliability of different recording windows on whole-brain peak MPS using a validated hFEM. Utilizing 53 on-field head impacts recorded via an instrumented mouthguard during a Canadian varsity football game, 10 recording windows were investigated with varying pre- and post-impact-trigger durations. Tukey pair-wise comparisons revealed no statistically significant differences in MPS responses for the different recording windows. However, specific impacts showed marked variability up to 40%. It was found, through correlation analyses, that impacts with lower peak linear acceleration exhibited greater response variability across different pre-trigger durations. Signal shape, analyzed through spectral analysis, influenced the time required for MPS development, resulting in specific impacts requiring a prolonged post-trigger duration. This study adds to the existing consensus on standardizing HIMd acquisition time windows and sheds light on impact characteristics leading to peak MPS variation across different head impact kinematic recording windows. Considering impact characteristics in research assessments is crucial, as certain impacts, affected by recording duration, may lead to significant errors in peak MPS responses during cumulative longitudinal exposure assessments.
Collapse
Affiliation(s)
- Véronique Bouvette
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France.
| | - Y Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - L De Beaumont
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - S Guay
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - S A Vinet
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - E Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| |
Collapse
|
3
|
Ding L, Patel A, Shankar S, Driscoll N, Zhou C, Rex TS, Vitale F, Gallagher MJ. An Open-Source Mouse Chronic EEG Array System with High-Density MXene-Based Skull Surface Electrodes. eNeuro 2024; 11:ENEURO.0512-22.2023. [PMID: 38388423 PMCID: PMC10884564 DOI: 10.1523/eneuro.0512-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Abstract
Electroencephalography (EEG) is an indispensable tool in epilepsy, sleep, and behavioral research. In rodents, EEG recordings are typically performed with metal electrodes that traverse the skull into the epidural space. In addition to requiring major surgery, intracranial EEG is difficult to perform for more than a few electrodes, is time-intensive, and confounds experiments studying traumatic brain injury. Here, we describe an open-source cost-effective refinement of this technique for chronic mouse EEG recording. Our alternative two-channel (EEG2) and sixteen-channel high-density EEG (HdEEG) arrays use electrodes made of the novel, flexible 2D nanomaterial titanium carbide (Ti3C2T x ) MXene. The MXene electrodes are placed on the surface of the intact skull and establish an electrical connection without conductive gel or paste. Fabrication and implantation times of MXene EEG electrodes are significantly shorter than the standard approach, and recorded resting baseline and epileptiform EEG waveforms are similar to those obtained with traditional epidural electrodes. Applying HdEEG to a mild traumatic brain injury (mTBI) model in mice of both sexes revealed that mTBI significantly increased spike-wave discharge (SWD) preictal network connectivity with frequencies of interest in the β-spectral band (12-30 Hz). These findings indicate that the fabrication of MXene electrode arrays is a cost-effective, efficient technology for multichannel EEG recording in mice that obviates the need for skull-penetrating surgery. Moreover, increased preictal β-frequency network connectivity may contribute to the development of early post-mTBI SWDs.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurology, Vanderbilt University School of Medicine, Nashville 37232, Tennessee
| | - Aashvi Patel
- Department of Neurology, Vanderbilt University School of Medicine, Nashville 37232, Tennessee
| | - Sneha Shankar
- Departments of Bioengineering and Neurology, Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Nicolette Driscoll
- Departments of Bioengineering and Neurology, Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University School of Medicine, Nashville 37232, Tennessee
| | - Tonia S Rex
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville 37232, Tennessee
| | - Flavia Vitale
- Departments of Bioengineering and Neurology, Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia 19104, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia 19104, Pennsylvania
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University School of Medicine, Nashville 37232, Tennessee
- Department of Veteran's Affairs, Tennessee Valley Health System, Nashville 37212, Tennessee
| |
Collapse
|
4
|
Amico F, Koberda JL. Quantitative Electroencephalography Objectivity and Reliability in the Diagnosis and Management of Traumatic Brain Injury: A Systematic Review. Clin EEG Neurosci 2023:15500594231202265. [PMID: 37792559 DOI: 10.1177/15500594231202265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Background. Persons with a history of traumatic brain injury (TBI) may exhibit short- and long-term cognitive deficits as well as psychiatric symptoms. These symptoms often reflect functional anomalies in the brain that are not detected by standard neuroimaging. In this context, quantitative electroencephalography (qEEG) is more suitable to evaluate non-normative activity in a wide range of clinical settings. Method. We searched the literature using the "Medline" and "Web of Science" online databases. The search was concluded on February 23, 2023, and revised on July 12, 2023. It returned 134 results from Medline and 4 from Web of Science. We then applied the PRISMA method, which led to the selection of 31 articles, the most recent one published in March 2023. Results. The qEEG method can detect functional anomalies in the brain occurring immediately after and even years after injury, revealing in most cases abnormal power variability and increases in slow (delta and theta) versus decreases in fast (alpha, beta, and gamma) frequency activity. Moreover, other findings show that reduced beta coherence between frontoparietal regions is associated with slower processing speed in patients with recent mild TBI (mTBI). More recently, machine learning (ML) research has developed highly reliable models and algorithms for the detection of TBI, some of which are already integrated into commercial qEEG equipment. Conclusion. Accumulating evidence indicates that the qEEG method may improve the diagnosis and management of TBI, in many cases revealing long-term functional anomalies in the brain or even neuroanatomical insults that are not revealed by standard neuroimaging. While FDA clearance has been obtained only for some of the commercially available equipment, the qEEG method allows for systematic, cost-effective, non-invasive, and reliable investigations at emergency departments. Importantly, the automated implementation of intelligent algorithms based on multimodally acquired, clinically relevant measures may play a key role in increasing diagnosis reliability.
Collapse
Affiliation(s)
- Francesco Amico
- Neotherapy, Weston, FL, USA
- Texas Center for Lifestyle Medicine, Houston, TX, USA
| | | |
Collapse
|
5
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Pacia SV. Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy. Brain Sci 2023; 13:1176. [PMID: 37626532 PMCID: PMC10452821 DOI: 10.3390/brainsci13081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Sub-scalp Implantable Telemetric EEG (SITE) devices are under development for the treatment of epilepsy. However, beyond epilepsy, continuous EEG analysis could revolutionize the management of patients suffering from all types of brain disorders. This article reviews decades of foundational EEG research, collected from short-term routine EEG studies of common neurological and behavioral disorders, that may guide future SITE management and research. Established quantitative EEG methods, like spectral EEG power density calculation combined with state-of-the-art machine learning techniques applied to SITE data, can identify new EEG biomarkers of neurological disease. From distinguishing syncopal events from seizures to predicting the risk of dementia, SITE-derived EEG biomarkers can provide clinicians with real-time information about diagnosis, treatment response, and disease progression.
Collapse
Affiliation(s)
- Steven V Pacia
- Zucker School of Medicine at Hofstra-Northwell, Neurology Northwell Health, 611 Northern Blvd, Great Neck, New York, NY 11021, USA
| |
Collapse
|
7
|
Mangine R, Tersak J, Palmer T, Hill-Lindsay A, Patton B, Eifert-Mangine M, Jacobs B, Colosimo AJ. The Longitudinal Neurophysiological Adaptation of a Division I Female Lacrosse Player Following Anterior Cruciate Rupture and Repair: A Case Report. Int J Sports Phys Ther 2023; 18:467-476. [PMID: 37020442 PMCID: PMC10069340 DOI: 10.26603/001c.73179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Background Neurophysiological adaptation following anterior cruciate ligament (ACL) rupture and repair (ACLR) is critical in establishing neural pathways during the rehabilitation process. However, there is limited objective measures available to assess neurological and physiological markers of rehabilitation. Purpose To investigate the innovative use of quantitative electroencephalography (qEEG) to monitor the longitudinal change in brain and central nervous systems activity while measuring musculoskeletal function during an anterior cruciate ligament repair rehabilitation. Case Description A 19 year-old, right-handed, Division I NCAA female lacrosse midfielder suffered an anterior cruciate ligament rupture, with a tear to the posterior horn of the lateral meniscus of the right knee. Arthroscopic reconstruction utilizing a hamstring autograft and a 5% lateral meniscectomy was performed. An evidence-based ACLR rehabilitation protocol was implemented while using qEEG. Outcomes Central nervous system, brain performance and musculoskeletal functional biomarkers were monitored longitudinally at three separate time points following anterior cruciate injury: twenty-four hours post ACL rupture, one month and 10 months following ACLR surgery. Biological markers of stress, recovery, brain workload, attention and physiological arousal levels yielded elevated stress determinants in the acute stages of injury and were accompanied with noted brain alterations. Brain and musculoskeletal dysfunction longitudinally reveal a neurophysiological acute compensation and recovering accommodations from time point one to three. Biological responses to stress, brain workload, arousal, attention and brain connectivity all improved over time. Discussion The neurophysiological responses following acute ACL rupture demonstrates significant dysfunction and asymmetries neurocognitively and physiologically. Initial qEEG assessments revealed hypoconnectivity and brain state dysregulation. Progressive enhanced brain efficiency and functional task progressions associated with ACLR rehabilitation had notable simultaneous improvements. There may be a role for monitoring CNS/brain state throughout rehabilitation and return to play. Future studies should investigate the use of qEEG and neurophysiological properties in tandem during the rehabilitation progression and return to play.
Collapse
Affiliation(s)
- Robert Mangine
- Director of Residency Education NovaCare Rehabilitation
- Associate Director Sports Medicine University of Cincinnati
| | - Jim Tersak
- Sports Medicine Director of Rehabilitation NovaCare Rehabilitation
| | - Thomas Palmer
- Exercise Science and Integrative Health Mount St. Joseph University
| | | | - Bolton Patton
- Physical Therapy University of Alabama at Birmingham
| | | | - Bradley Jacobs
- Neuro-Visual Performance Institute
- Clinical Research Associate University of Cincinnati
| | | |
Collapse
|